References
- A. Osareh, B. Shadgar, A segmentation method of lung cavities using region aided geometric snakes, J. Med. Syst. 34 (4) (2010) 419-433, https://doi.org/10.1007/s10916-009-9255-z.
-
J.S. Nabipour, A. Khorshidi, Spectroscopy and optimizing semiconductor detector data under X and
${\gamma}$ photons using image processing technique, J. Med. Imag. Radiat. Sci. 49 (2) (2018) 194-200, https://doi.org/10.1016/j.jmir.2018.01.004. - G. Khaleghi, J. Soltani-Nabipour, A. Khorshidi, F. Taheri, Design of band-pass filters by experimental and simulation methods at the range of 100-125 keV of X-ray in fluoroscopy, Int. J. Biosci. Technol. (2019), https://doi.org/10.1504/IJBET.2019.10025733. Accepted.
- M.N. Prasad, M.S. Brown, S. Ahmad, F. Abtin, J. Allen, I. da Costa, H.J. Kim, M.F. McNitt-Gray, J.G. Goldin, Automatic segmentation of lung parenchyma in the presence of diseases based on curvature of ribs, Acad. Radiol. 15 (9) (2008) 1173-1180, https://doi.org/10.1016/j.acra.2008.02.004.
- J. Pu, D.S. Paik, X. Meng, J.E. Roos, G.D. Rubin, Shape "break-and-repair" strategy and its application to automated medical image segmentation, IEEE Trans. Visual. Comput. Graph. 17 (1) (2011) 115-124, https://doi.org/10.1109/TVCG.2010.56.
- E. Rios Velazquez, H.J. Aerts, Y. Gu, D.B. Goldgof, D. De Ruysscher, A. Dekker, R. Korn, R.J. Gillies, P. Lambin, A semiautomatic CT-based ensemble segmentation of lung tumors: comparison with oncologists' delineations and with the surgical specimen, Radiother. Oncol. 105 (2) (2012) 167-173, https://doi.org/10.1016/j.radonc.2012.09.023.
- S. Sun, M. Sonka, R.R. Beichel, Lung segmentation refinement based on optimal surface finding utilizing a hybrid desktop/virtual reality user interface, Comput. Med. Imag. Graph. 37 (1) (2013) 15-27, https://doi.org/10.1016/j.compmedimag.2013.01.003.
- Lung Cancer Alliance, LCA. Washington, DC. https://lungcanceralliance.org/.
- The Deformable Image Registration Lab, DIR-Lab. Winship Cancer Institute, Emory University, Atlanta, GA. https://www.dir-lab.com/.
- J. Dehmeshki, H. Amin, M. Valdivieso, X. Ye, Segmentation of pulmonary nodules in thoracic CT scans: a region growing approach, IEEE Trans. Med. Imag. 27 (4) (2008) 467-480, https://doi.org/10.1109/TMI.2007.907555.
- M. Keshani, Z. Azimifar, F. Tajeripour, R. Boostani, Lung nodule segmentation and recognition using SVM classifier and active contour modeling: a complete intelligent system, Comput. Biol. Med. 43 (4) (2013) 287-300, https://doi.org/10.1016/j.compbiomed.2012.12.004.
Cited by
- Assessment of absorbed dose in deformed breast tissue by Monte Carlo simulation vol.2, pp.8, 2020, https://doi.org/10.1007/s42452-020-3113-5
- Individual Tree Crown Delineation from UAS Imagery Based on Region Growing and Growth Space Considerations vol.12, pp.15, 2020, https://doi.org/10.3390/rs12152363
- Salient region growing based on Gaussian pyramid vol.15, pp.13, 2021, https://doi.org/10.1049/ipr2.12307
- An Interval Iteration Based Multilevel Thresholding Algorithm for Brain MR Image Segmentation vol.23, pp.11, 2021, https://doi.org/10.3390/e23111429