References
- J. Huang, Y. Huang, Q. Wang, et al., Numerical study on effect of gap width of narrow rectangular channel on critical heat flux enhancement, Nucl. Eng. Des. 239 (2) (2009) 320-326. https://doi.org/10.1016/j.nucengdes.2008.11.007
- L. Li, D. Fang, D. Zhang, et al., Flow and heat transfer characteristics in platetype fuel channels after formation of blisters on fuel elements, Ann. Nucl. Energy 134 (2019) 284-298. https://doi.org/10.1016/j.anucene.2019.06.030
- G.P. Celata, K. Mishima, G. Zummo, Critical heat flux prediction for saturated flow boiling of water in vertical tubes, Int. J. Heat Mass Tran. 44 (22) (2001) 4323-4331. https://doi.org/10.1016/S0017-9310(01)00072-2
- T. Okawa, A. Kotani, I. Kataoka, et al., Prediction of the critical heat flux in annular regime in various vertical channels, Nucl. Eng. Des. 229 (2-3) (2004) 223-236. https://doi.org/10.1016/j.nucengdes.2004.01.005
- Y. Sudo, M. Kaminaga, A CHF characteristic for downward flow in a narrow vertical rectangular channel heated from both sides, Int. J. Multiphas. Flow 15 (5) (1989) 755-766. https://doi.org/10.1016/0301-9322(89)90039-6
- Y. Sudo, M. Kaminaga, A new CHF correlation scheme proposed for vertical rectangular channels heated from both sides in nuclear research reactors, J. Heat Tran. 115 (2) (1993) 426-434. https://doi.org/10.1115/1.2910695
- Y. Sudo, Study on critical heat flux in rectangular channels heated from one or both sides at pressures ranging from 0.1 to 14 MPa, J. Heat Tran. 118 (3) (1996) 680-688. https://doi.org/10.1115/1.2822686
- Y. Sudo, M. Kaminaga, Critical heat flux at high velocity channel flow with high subcooling, Nucl. Eng. Des. 187 (2) (1999) 215-227. https://doi.org/10.1016/S0029-5493(98)00294-5
- D. Lu, X. Bai, Y. Huang, et al., Study on CHF in thin rectangular channels and evaluation of its empirical correlations, Chin. J. Nucl. Sci. Eng. 24 (3) (2004) 242-248. https://doi.org/10.3321/j.issn:0258-0918.2004.03.009
- H. Utsuno, F. Kaminaga, Prediction of liquid film dryout in two-phase annularmist flow in a uniformly heated narrow tube development of analytical method under BWR conditions, J. Nucl. Sci. Technol. 35 (9) (1998) 643-653. https://doi.org/10.1080/18811248.1998.9733920
- W. Qu, I. Mudawar, Flow boiling heat transfer in two-phase micro-channel heat sinkseeII. Annular two-phase flow model, Int. J. Heat Mass Tran. 46 (15) (2003) 2773-2784. https://doi.org/10.1016/S0017-9310(03)00042-5
- T. Okawa, A. Kotani, I. Kataoka, et al., Prediction of the critical heat flux in annular regime in various vertical channels, Nucl. Eng. Des. 229 (2-3) (2004) 223-236. https://doi.org/10.1016/j.nucengdes.2004.01.005
- G. Su, J. Gou, S. Qiu, et al., Theoretical calculation of annular upward flow in a narrow annuli with bilateral heating, Nucl. Eng. Des. 225 (2-3) (2003) 219-247. https://doi.org/10.1016/S0029-5493(03)00160-2
- F.A.N. Pu, Q.I.U. Sui-Zheng, J.I.A. Dou-Nan, An investigation of flow characteristics and critical heat flux in vertical upward round tube, Nucl. Sci. Tech. 17 (3) (2006) 170-176. https://doi.org/10.1016/S1001-8042(06)60033-X
- G. Su, K. Fukuda, D. Jia, et al., Application of an artificial neural network in reactor thermohydraulic problem: prediction of critical heat flux, J. Nucl. Sci. Technol. 39 (5) (2002) 564-571. https://doi.org/10.3327/jnst.39.564
- Y.W. Wu, G.H. Su, S.Z. Qiu, et al., Experimental study on critical heat flux in bilaterally heated narrow annuli, Int. J. Multiphas. Flow 35 (11) (2009) 977-986. https://doi.org/10.1016/j.ijmultiphaseflow.2009.07.004
- R. Sun, G. Song, D. Zhang, et al., Experimental study of single-phase flow and heat transfer in rectangular channels under uniform and non-uniform heating, Exp. Therm. Fluid Sci. (2020) 110055.
- G. Song, D. Zhang, G.H. Su, et al., Assessment of ECCMIX component in RELAP5 based on ECCS experiment, Nucl. Eng. Technol. 52 (1) (2019) 59-68. https://doi.org/10.1016/j.net.2019.07.007
- G. Song, D. Zhang, Q. Liu, et al., RELAP5/MOD3. 4 calculation and model evaluation based on upper plenum entrainment experiment in AP1000, Ann. Nucl. Energy 138 (2020) 107143. https://doi.org/10.1016/j.anucene.2019.107143
- D.X. Du, W.X. Tian, G.H. Su, et al., Theoretical study on the characteristics of critical heat flux in vertical narrow rectangular channels, Appl. Therm. Eng. 36 (2012) 21-31. https://doi.org/10.1016/j.applthermaleng.2011.11.039
- J.C. Sturgis, I. Mudawar, Critical heat flux in a long, rectangular channel subjected to one-sided heatingdI. Flow visualization, Int. J. Heat Mass Tran. 42 (10) (1999) 1835-1847. https://doi.org/10.1016/S0017-9310(98)00274-9
- F. Feind, Falling liquid films with countercurrent air flow in vertical tubes, VDI-Forschungscheft 481 (1960) 5-35.
- K.C. Tu, C.H. Lee, S.J. Wang, et al., A new mechanistic critical heat flux model at low-pressure and low-flow conditions, Nucl. Technol. 124 (3) (1998) 243-254. https://doi.org/10.13182/NT98-A2923
- T. Funada, D.D. Joseph, Viscous potential flow analysis of KelvineHelmholtz instability in a channel, J. Fluid Mech. 445 (2001) 263-283. https://doi.org/10.1017/S0022112001005572
- G.B. Wallis, J.E. Dodson, The onset of slugging in horizontal stratified air-water flow, Int. J. Multiphas. Flow 1 (1) (1973) 173-193. https://doi.org/10.1016/0301-9322(73)90010-4
- H.S. Jacket, J.D. Roarty, J.E. Zerbe, Investigation of Burnout Heat Flux in Rectangular Channels at 2000 Psia, Westinghouse Electric Corp. Bettis Plant, Pittsburgh, 1956.
- F.E. Tippets, Critical Heat Flux and Flow Pattern Characteristics of High Pressure Boiling Water in Forced Convection, General Electric Co. Atomic Power Equipment Dept., San Jose, Calif., 1962.
- K. Mishima, F. Tanaka, T. Hibiki, et al., Heat transfer study for thermalhydraulic design of the solid-target of spallation neutron source, J. Nucl. Sci. Technol. 38 (10) (2001) 832-843. https://doi.org/10.1080/18811248.2001.9715103
Cited by
- Experimental study on vertically upward steam-water two-phase flow patterns in narrow rectangular channel vol.53, pp.1, 2021, https://doi.org/10.1016/j.net.2020.06.003