DOI QR코드

DOI QR Code

Analysis on the Importance Factor of Residential Environment using R

R을 활용한 주거환경 중요도 요소에 대한 분석

  • Received : 2020.12.18
  • Accepted : 2020.12.30
  • Published : 2020.12.31

Abstract

Recently, interest in data analysis has increased, and convergence research through data analysis has been actively conducted in various fields such as engineering, natural science, and social science. In the field of architecture, various studies using data analysis are being conducted, and in particular, efforts are being made to solve the problems in the field of architecture that have been quantitatively expanded through the urbanization process. In this study, data analysis on residential satisfaction of residents in residential environment improvement areas and similar neighborhoods through urban regeneration projects is performed. Through analysis using R for post-residential evaluation elements that are conducted after building construction and occupancy, important evaluation items that affect the satisfaction of the residential environment are identified by analyzing the association rules between each evaluation element and identifying the frequency of major requirements of residents. To grasp. Through this, we intend to conduct convergence research between IT and architecture fields, such as the development of a system that can recommend high-quality residential areas as well as providing data for securing high-quality residential spaces when constructing residential areas in the future.

최근 데이터 분석에 대한 관심이 높아지며 공학, 자연과학, 사회과학 영역 등 다양한 분야에서 데이터 분석을 통한 융·복합 연구가 활발하게 이루어지고 있다. 건축분야 역시 데이터 분석을 활용한 다양한 연구가 진행되고 있으며 특히, 이를 통해 도시화 과정을 통해 양적 확대를 진행해왔던 건축분야의 문제점을 해결하고자 하는 노력이 이루어지고 있다. 본 연구에서는 도시재생사업을 통한 주거환경 개선지역과 유사 인근지역 주거자의 주거만족도에 대한 데이터 분석을 수행한다. 건물 건축과 입주 후 진행되는 거주 후 평가 요소에 대해 R을 활용한 분석을 통해 각 평가 요소 간의 연관규칙 분석과 거주자의 주요 요구 사항의 빈도 수 파악을 통해 주거환경 만족도에 영향을 미치는 중요 평가 항목을 파악한다. 이를 통해, 향후 건축 분야에서 주거지 구성 시 양질의 주거 공간 확보를 위한 데이터 제공과 함께 양질의 주거지역을 추천할 수 있는 시스템의 개발 등 IT와 건축분야 간의 융·복합 연구를 진행하고자 한다.

Keywords

References

  1. S. Kim, "A Study on the Comparison to Residential Environment of a Poverty Supported by Government using Post Occupancy Evaluation", Journal of Architectural Institute of Korea, Vol.25, No.9, pp.49-56, 2004.
  2. O. Kwon and Y. Choi, "Comparison to Residential Environment through Satisfaction of Community using Post Occupancy Evaluation", Journal of The Regional Association of Architectural Institute of Korea, Vol.16, No.1, pp.27-34, 2014.
  3. Y. Kim, Do it! Easy to Learn R Data Analysis, EasysPublishing, Seoul, 2017.
  4. Y. Kim, Introduction To Database, 2rd Ed., Hanbit Academy, Seoul, 2019.
  5. K. Son and H. Ryu, "Association Rules Analysis of Safe Accidents Caused by Falling Objects", Journal of Korea Institute of Building Construction, Vol.19, No.4, pp.341-350, 2019. https://doi.org/10.5345/JKIBC.2019.19.4.341
  6. K. Ahn and et. al., "POS Data Analysis System based on Association Rule Analysis", Journal of the Korea Industrial Information Systems Research, Vol.17, No.5, pp.9-17, 2012. https://doi.org/10.9723/JKSIIS.2012.17.5.009