DOI QR코드

DOI QR Code

Comparison of the cyclic fatigue resistance of VDW.ROTATE, TruNatomy, 2Shape, and HyFlex CM nickel-titanium rotary files at body temperature

  • Gundogar, Mustafa (Department of Endodontics, Faculty of Dentistry, Istanbul Medipol University) ;
  • Uslu, Gulsah (Department of Endodontics, Faculty of Dentistry, Canakkale Onsekiz Mart University) ;
  • Ozyurek, Taha (Department of Endodontics, Faculty of Dentistry, Istanbul Medeniyet University) ;
  • Plotino, Gianluca (Grande Plotino & Torsello - Dental Clinic)
  • Received : 2019.07.19
  • Accepted : 2020.03.23
  • Published : 2020.08.31

Abstract

Objectives: This study aims to compare the cyclic fatigue resistance of VDW.ROTATE, TruNatomy, 2Shape, and HyFlex CM nickel-titanium (NiTi) rotary files at body temperature. Materials and Methods: In total, 80 VDW.ROTATE (25/0.04), TruNatomy (26/0.04), 2Shape (25/0.04), and HyFlex CM (25/0.04) NiTi rotary files (n = 20 in each group) were subjected to static cyclic fatigue testing at body temperature (37℃) in stainless-steel artificial canals prepared according to the size and taper of the instruments until fracture occurred. The number of cycles to fracture (NCF) was calculated, and the lengths of the fractured fragments were measured. The data were statistically analyzed using a 1-way analysis of variance and post hoc Tamhane tests at the 5% significance level (p < 0.05). Results: There were significant differences in the cyclic fatigue resistance among the groups (p < 0.05), with the highest to lowest NCF values of the files as follows: VDW.ROTATE, HyFlex CM, 2Shape, and TruNatomy. There was no significant difference in the lengths of the fractured fragments among the groups. The scanning electron microscope images of the files revealed typical characteristics of fracture due to cyclic fatigue. Conclusions: The VDW.ROTATE files had the highest cyclic fatigue resistance, and the TruNatomy and 2Shape files had the lowest cyclic fatigue resistance in artificial canals at body temperature.

Keywords

References

  1. Clark D, Khademi J. Modern molar endodontic access and directed dentin conservation. Dent Clin North Am 2010;54:249-273. https://doi.org/10.1016/j.cden.2010.01.001
  2. Plotino G, Grande NM, Isufi A, Ioppolo P, Pedulla E, Bedini R, Gambarini G, Testarelli L. Fracture strength of endodontically treated teeth with different access cavity designs. J Endod 2017;43:995-1000. https://doi.org/10.1016/j.joen.2017.01.022
  3. Plotino G, Ozyurek T, Grande NM, Gundogar M. Influence of size and taper of basic root canal preparation on root canal cleanliness: a scanning electron microscopy study. Int Endod J 2019;52:343-351. https://doi.org/10.1111/iej.13002
  4. Filizola de Oliveira DJ, Leoni GB, da Silva Goulart R, Sousa-Neto MD, Silva Sousa YTC, Silva RG. Changes in geometry and transportation of root canals with severe curvature prepared by different heat-treated nickel-titanium instruments: a micro-computed tomographic study. J Endod 2019;45:768-773. https://doi.org/10.1016/j.joen.2019.02.018
  5. Lang H, Korkmaz Y, Schneider K, Raab WH. Impact of endodontic treatments on the rigidity of the root. J Dent Res 2006;85:364-368. https://doi.org/10.1177/154405910608500416
  6. Sabeti M, Kazem M, Dianat O, Bahrololumi N, Beglou A, Rahimipour K, Dehnavi F. Impact of access cavity design and root canal taper on fracture resistance of endodontically treated teeth: an ex vivo investigation. J Endod 2018;44:1402-1406. https://doi.org/10.1016/j.joen.2018.05.006
  7. VDW GmbH. ROTATE Brochure [Internet]. Munich: VDW GmbH; c2019 [cited 2019 May 22]. Available from: https://www.vdw-dental.com/fileadmin/Dokumente/Sortiment/Aufbereitung/Rotierende-Aufbereitung/ROTATE/VDW-Dental-ROTATE-Product-Brochure-EN.pdf.(updated 2019 Feb 21).
  8. Dentsply Sirona. TruNatomy Brochure [Internet]. Johnson (TN): Dentsply Sirona; c2019 [cited 2019 May 22]. Available from: https://www.dentsplysirona.com/en/explore/endodontics/trunatomy.html.(updated 2019 Sep 18).
  9. Uslu G, Ozyurek T, Yilmaz K, Gundogar M. Cyclic fatigue resistance of R-Pilot, HyFlex EDM and PathFile nickel-titanium glide path files in artificial canals with double (S-shaped) curvature. Int Endod J 2018;51:584-589. https://doi.org/10.1111/iej.12846
  10. Ozyurek T, Uslu G, Gundogar M, Yilmaz K, Grande NM, Plotino G. Comparison of cyclic fatigue resistance and bending properties of two reciprocating nickel-titanium glide path files. Int Endod J 2018;51:1047-1052. https://doi.org/10.1111/iej.12911
  11. Huang X, Shen Y, Wei X, Haapasalo M. Fatigue resistance of nickel-titanium instruments exposed to high-concentration hypochlorite. J Endod 2017;43:1847-1851. https://doi.org/10.1016/j.joen.2017.06.033
  12. Plotino G, Grande NM, Mazza C, Petrovic R, Testarelli L, Gambarini G. Influence of size and taper of artificial canals on the trajectory of NiTi rotary instruments in cyclic fatigue studies. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:e60-e66.
  13. Plotino G, Grande NM, Testarelli L, Gambarini G. Cyclic fatigue of Reciproc and WaveOne reciprocating instruments. Int Endod J 2012;45:614-618. https://doi.org/10.1111/j.1365-2591.2012.02015.x
  14. Shen Y, Zhou HM, Zheng YF, Campbell L, Peng B, Haapasalo M. Metallurgical characterization of controlled memory wire nickel-titanium rotary instruments. J Endod 2011;37:1566-1571. https://doi.org/10.1016/j.joen.2011.08.005
  15. de Vasconcelos RA, Murphy S, Carvalho CA, Govindjee RG, Govindjee S, Peters OA. Evidence for reduced fatigue resistance of contemporary rotary instruments exposed to body temperature. J Endod 2016;42:782-787. https://doi.org/10.1016/j.joen.2016.01.025
  16. Plotino G, Grande NM, Mercade Bellido M, Testarelli L, Gambarini G. Influence of temperature on cyclic fatigue resistance of ProTaper Gold and ProTaper Universal rotary files. J Endod 2017;43:200-202. https://doi.org/10.1016/j.joen.2016.10.014
  17. Alfawaz H, Alqedairi A, Alsharekh H, Almuzaini E, Alzahrani S, Jamleh A. Effects of sodium hypochlorite concentration and temperature on the cyclic fatigue resistance of heat-treated nickel-titanium rotary instruments. J Endod 2018;44:1563-1566. https://doi.org/10.1016/j.joen.2018.07.009
  18. Klymus ME, Alcalde MP, Vivan RR, So MV, de Vasconselos BC, Duarte MA. Effect of temperature on the cyclic fatigue resistance of thermally treated reciprocating instruments. Clin Oral Investig 2019;23:3047-3052. https://doi.org/10.1007/s00784-018-2718-1
  19. Plotino G, Grande NM, Cordaro M, Testarelli L, Gambarini G. A review of cyclic fatigue testing of nickel-titanium rotary instruments. J Endod 2009;35:1469-1476. https://doi.org/10.1016/j.joen.2009.06.015
  20. Wan J, Rasimick BJ, Musikant BL, Deutsch AS. A comparison of cyclic fatigue resistance in reciprocating and rotary nickel-titanium instruments. Aust Endod J 2011;37:122-127. https://doi.org/10.1111/j.1747-4477.2010.00222.x
  21. Keles A, Eymirli A, Uyanik O, Nagas E. Influence of static and dynamic cyclic fatigue tests on the lifespan of four reciprocating systems at different temperatures. Int Endod J 2019;52:880-886. https://doi.org/10.1111/iej.13073
  22. Gambarini G, Grande NM, Plotino G, Somma F, Garala M, De Luca M, Testarelli L. Fatigue resistance of engine-driven rotary nickel-titanium instruments produced by new manufacturing methods. J Endod 2008;34:1003-1005. https://doi.org/10.1016/j.joen.2008.05.007
  23. Gambarini G, Plotino G, Grande NM, Al-Sudani D, De Luca M, Testarelli L. Mechanical properties of nickel-titanium rotary instruments produced with a new manufacturing technique. Int Endod J 2011;44:337-341. https://doi.org/10.1111/j.1365-2591.2010.01835.x
  24. Tripi TR, Bonaccorso A, Condorelli GG. Cyclic fatigue of different nickel-titanium endodontic rotary instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;102:e106-e114. https://doi.org/10.1016/j.tripleo.2005.12.012
  25. Grande NM, Plotino G, Pecci R, Bedini R, Malagnino VA, Somma F. Cyclic fatigue resistance and three-dimensional analysis of instruments from two nickel-titanium rotary systems. Int Endod J 2006;39:755-763. https://doi.org/10.1111/j.1365-2591.2006.01143.x
  26. Cheung GS, Zhang EW, Zheng YF. A numerical method for predicting the bending fatigue life of NiTi and stainless steel root canal instruments. Int Endod J 2011;44:357-361. https://doi.org/10.1111/j.1365-2591.2010.01838.x
  27. Plotino G, Grande NM, Melo MC, Bahia MG, Testarelli L, Gambarini G. Cyclic fatigue of NiTi rotary instruments in a simulated apical abrupt curvature. Int Endod J 2010;43:226-230. https://doi.org/10.1111/j.1365-2591.2009.01668.x
  28. Kaval ME, Capar ID, Ertas H, Sen BH. Comparative evaluation of cyclic fatigue resistance of four different nickel-titanium rotary files with different cross-sectional designs and alloy properties. Clin Oral Investig 2017;21:1527-1530. https://doi.org/10.1007/s00784-016-1917-x
  29. Staffoli S, Grande NM, Plotino G, Ozyurek T, Gundogar M, Fortunato L, Polimeni A. Influence of environmental temperature, heat-treatment and design on the cyclic fatigue resistance of three generations of a single-file nickel-titanium rotary instrument. Odontology 2019;107:301-307. https://doi.org/10.1007/s10266-018-0399-5
  30. Lopes HP, Elias CN, Vieira MV, Siqueira JF Jr, Mangelli M, Lopes WS, Vieira VT, Alves FR, Oliveira JC, Soares TG. Fatigue life of Reciproc and Mtwo instruments subjected to static and dynamic tests. J Endod 2013;39:693-696. https://doi.org/10.1016/j.joen.2012.11.048
  31. Ozyurek T, Gundogar M, Uslu G, Yilmaz K, Staffoli S, Nm G, Plotino G, Polimeni A. Cyclic fatigue resistances of Hyflex EDM, WaveOne gold, Reciproc blue and 2shape NiTi rotary files in different artificial canals. Odontology 2018;106:408-413. https://doi.org/10.1007/s10266-018-0340-y
  32. Capar ID, Kaval ME, Ertas H, Sen BH. Comparison of the cyclic fatigue resistance of 5 different rotary pathfinding instruments made of conventional nickel-titanium wire, M-wire, and controlled memory wire. J Endod 2015;41:535-538. https://doi.org/10.1016/j.joen.2014.11.008
  33. Pedulla E, Lizio A, Scibilia M, Grande NM, Plotino G, Boninelli S, Rapisarda E, Lo Giudice G. Cyclic fatigue resistance of two nickel-titanium rotary instruments in interrupted rotation. Int Endod J 2017;50:194-201. https://doi.org/10.1111/iej.12609

Cited by

  1. Cyclic Fatigue of TruNatomy Nickel-Titanium Rotary Instrument in Single and Double Curvature Canals: A Comparative Study vol.12, pp.1, 2020, https://doi.org/10.5005/jp-journals-10015-1793
  2. Impact of Different Access Cavity Designs and Ni-Ti Files on the Elimination of Enterococcus faecalis from the Root Canal System: An In Vitro Study vol.12, pp.4, 2020, https://doi.org/10.3390/app12042049