DOI QR코드

DOI QR Code

Numerical study of desalination by Sweeping Gas Membrane Distillation

  • Loussif, Nizar (Ecole Nationale d'Ingenieurs de Monastir, Universite de Monastir) ;
  • Orfi, Jamel (Mechanical Engineering Department, King Saud University)
  • Received : 2020.04.30
  • Accepted : 2020.09.22
  • Published : 2020.09.25

Abstract

The present study deals with a numerical investigation of heat and mass transfer in a Sweeping Gas Membrane Distillation (SGMD) used for desalination. The governing equations expressing the conservation of mass, momentum, energy and species with coupled boundary conditions were solved numerically. The slip boundary condition applied on the feed saline solution-hydrophobic membrane interface is taken into consideration showing its effects on profiles and process parameters.The numerical model was validated with available experimental data and was found to be in good agreement particularly when the slip condition is considered. The results of the simulations highlighted the effect of slip boundary condition on the velocity and temperature distributions as well as the process effectiveness. They showed in particular that as the slip length increases, the permeate flux of fresh water and process thermal efficiency rise.

Keywords

Acknowledgement

The second author would like to thank the support of King Saud University, Deanship of Scientific Research, College of Engineering Research Center.

References

  1. Alklaibi, A.M. and Lior, N. (2005), "Transport analysis of air gap membrane distillation", J. Membr. Sci., 255(1-2), 239-253. https://doi.org/10.1016/j.memsci.2005.01.038.
  2. Alklaibi, A.M. and Lior, N. (2006), "Heat and mass transfer resistance analysis of membrane distillation", J. Membr. Sci., 282(1-2), 362-369. https://doi.org/10.1016/j.memsci.2006.05.040
  3. Camacho, L.M., Dumee, L., Zhang, J., Li, J., Duke, M., Gomez, J. and Gray, S. (2013), "Advances in Membrane Distillation for Water Desalination and Purification Applications", Water, 5(1), 94-196. https://doi.org/10.3390/w5010094
  4. Charfi, K., Khayet, M., and Safi, M.J. (2010), "Numerical simulation and experimental studies on heat and mass transfer using sweeping gas membrane distillation", Desalination, 259(1-3), 84-96. https://doi.org/10.1016/j.desal.2010.04.028
  5. Choi, C.H. and Kim, C.J. (2006), "Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface", Phys. Rev. Lett.,. 96, 066001. https://doi.org/10.1103/PhysRevLett.96.066001
  6. Cojocaru, C. and Khayet, M. (2011), "Sweeping gas membrane distillation of sucrose aqueous solutions: Response surface modeling and optimization", Separation Purification Technol.,, 81(1), 12-24. https://doi.org/10.1016/j.seppur.2011.06.031
  7. Cottin, B.C., Cross, B., Steinberger, A. and Charlaix, E. (2005), "Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts", Phys. Rev. Lett., 94(5), 056102. https://doi.org/ 10.1103/PhysRevLett.94.056102
  8. Duyen, P.M., Paul, J., Romchat, R. and Chettiyapan, V. (2016), "Feasability of sweeping gas membrane distillation on concentrating triethylene glycol from waste streams", Chem. Eng. Process. Process Intensification, 110, 225-234. https://doi.org/10.1016/j.cep.2016.10.015
  9. El-Bourawi, M.S., Ding, Z., Ma, R. and Khayet, M. (2006), "Framework for better understanding membrane distillation separation process'', J. Membr. Sci., 285(1-2), 4-29. https://doi.org/10.1016/j.memsci.2006.08.002
  10. Jun Liu, J., Li, X., Zhang, W., Li, B., and Liu, C. (2020), "Superhydrophobic-slip surface based heat and mass transfer mechanism in vacuum membrane distillation", J. Membr. Sci., 614, 118505. https://doi.org/10.1016/j.memsci.2020.118505
  11. Khayet, M., Godino, M.P. and Mengual, J.I. (2003), "Theoretical and experimental studies on desalination using the sweeping gas membranedistillation method", Desalination, 157(1-3), 297-305. https://doi.org/10.1016/S0011-9164(03)00409-0.
  12. Khayet, M., Godino, P. and Mengual, J.I. (2000), "Nature of flow on sweeping gas membrane distillation", J. Membr. Sci., 2000, 170(2), 243-255. https://doi.org/10.1016/S0376-7388(99)00369-5.
  13. Khayet, M., Godino, M.P. and Mengual, J.I. (2002), "Thermal boundary layers in sweeping gas membrane distillation processes", AIChE J., 48(7), 1488-1497. https://doi.org/10.1002/aic.690480713.
  14. Lawson, K.W. and Lloyd, D.R. (1997), "Membrane distillation", J. Membr. Sci., 124(1), 1-25. https://doi.org/10.1016/S0376-7388(96)00236-0.
  15. Lee, C.H. and Won, H.H. (2001), "Effect of operating variables on the flux and selectivity in sweep gas membrane distillation for dilute aqueous isopropanol", J. Membr. Sci.,, 188(1), 79- 86.https://doi.org/10.1016/S0376-7388(01)00373-8.
  16. Lee, C., Choi, C.H. and Kim, C.J. (2008), "Structured surfaces for giant liquid slip". Phys. Rev. Lett., 101, 064501. https://doi.org/10.1103/PhysRevLett.101.064501.
  17. Loussif, N. and Orfi, J. (2016), "Comparative study of air gap, direct contact and sweeping gas membrane distillation", Membr. Water Treat., 7(1), 71-86. https://doi.org/10.12989/mwt.2016.7.1.071.
  18. Moore, S.E., Mirchandani, S.D., Karanikola, V., Nenoff, T.M., Arnold, R.G. and Saez, A.E. (2018), "Process modeling for economic optimization of a solar driven sweeping gas membrane distillation desalination system", Desalination, 437, 108-120. https://doi.org/10.1016/j.desal.2018.03.005.
  19. Orfi, J., Loussif, N., Davies, P.A. (2016), "Heat and mass transfer in membrane distillation used for desalination with slip flow", Desalination, 381, 135-142. https://doi.org/10.1016/j.desal.2015.12.009.
  20. Ou, J. and Rothstein, J.P. (2005), "Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces", Phys. Fluids, 17, 103606. https://doi.org/10.1063/1.2109867
  21. Pit, R., Hervet, H. and Leger, L. (2000), "Direct experimental evidence of slip in hexadecane:solid interfaces", Phys. Rev. Lett.,, 85(5), 980. https://doi.org/10.1103/PhysRevLett.85.980
  22. Ramon, G., Agnon, Y. and Dosoretz, C. (2009), "Heat transfer in vacuum membrane distillation: Effect of velocity slip", J. Membr. Sci., 331(1-2), 117-125. https://doi.org/10.1016/j.memsci.2009.01.022
  23. Rivier, C.A., Garcia-Payo, M.C., Marison, I.W. and Stockar, U.V. (2002), "Separation of binary mixtures by thermostatic sweeping gas membrane distillation I. Theory and simulations", J. Membr. Sci., 201(1-2), 1-16. https://doi.org/10.1016/S0376-7388(01)00648-2.
  24. Rommel, M., Koschikowski, J. and Wieghaus M. (2007), "Solar Driven Desalination systems based on Membrane desalination", Solar Desalination for the 21st Century, 247-257.
  25. Shukla, S., Mericq, J.P., Belleville, M.P., Hengl, N., Benes, N.E., Vankelecom, I. and Marcano, J.S. (2018), "Process intensification by coupling the Joule effect with pervaporation and sweeping gas membrane distillation", J. Membr. Sci., 545, 150-157. https://doi.org/10.1016/j.memsci.2017.09.061.
  26. Si, M.H., Chen, Y.H., Yuan, W.Z., Zhao, S., Hong, Y., Yed, W.B. and Yang, M. (2019), "Heat and mass transfer in a hollow fiber membrane contactor for sweeping gas membrane distillation", Separation Purification Technol., 220, 334-344. https://doi.org/10.1016/j.seppur.2019.03.046.
  27. Tretheway, D.C. and Meinhart, C.D. (2004), "A generating mechanism for apparent fluid slip in hydrophobic microchannels", Phys. Fluids, 16, 1509. https://doi.org/10.1063/1.1669400.
  28. Tretheway, D.C. and Meinhart, C.D. (2002), "Apparent fluid slip at hydrophobic microchannel walls", Phys. Fluids, 14, L9. https://doi.org/10.1063/1.1432696.
  29. Versteeg, K. and Malalasekera, W. (2007), An Introduction to Computational Fluid Dynamics: The Finite Volume Method, (2nd edition), Pearson and Prentice Hall, London.
  30. Xie, Z., Duong, T., Hoang, M., Nguyen, C. and Bolto, B. (2009), "Ammonia removal by sweep gas membrane distillation", Water Res., 43(6), 1693-1699. https://doi.org/10.1016/j.watres.2008.12.052.