DOI QR코드

DOI QR Code

Reuse potential of spent RO membrane for NF and UF process

  • Ng, Zhi Chien (Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia) ;
  • Chong, Chun Yew (Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia) ;
  • Sunarya, Muhammad Hamdan (School of Applied Science, Republic Polytechnic) ;
  • Lau, Woei Jye (Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia) ;
  • Liang, Yong Yeow (Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang) ;
  • Fong, See Yin (Oneness Water Sdn Bhd) ;
  • Ismail, Ahmad Fauzi (Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia)
  • Received : 2019.12.23
  • Accepted : 2020.06.30
  • Published : 2020.09.25

Abstract

With the increasing demand on reverse osmosis (RO) membranes for water purification worldwide, the number of disposed membrane elements is expected to increase accordingly. Thus, recycling and reuse of end-of-life RO membranes should be a global environmental action. In this work, we aim to reuse the spent RO membrane for nanofiltration (NF) and ultrafiltration (UF) process by subjecting the spent membrane to solvent and oxidizing solution treatment, respectively. Our results showed that solvent-treated RO membrane could perform as good as commercial NF membrane by achieving similar separation efficiencies, but with reduced water permeability due to membrane surface fouling. By degrading the polyamide layer of RO membrane, the transformed membrane could achieve high water permeability (85.6 L/㎡.h.bar) and excellent rejection against macromolecules (at least 87.4%), suggesting its reuse potential as UF membrane. More importantly, our findings showed that in-situ transformation on the spent RO membrane using solvent and oxidizing solution could be safely conducted as the properties of the entire spiral wound element did not show significant changes upon prolonged exposure of these two solutions. Our findings are important to open up new possibilities for the discarded RO membranes for reuse in NF and UF process, prolonging the lifespan of spent membranes and promoting the sustainability of the membrane process.

Keywords

Acknowledgement

The authors would like to thank Universiti Teknologi Malaysia (UTM) for providing UTMSHINE Signature Research Grant (Vot no. Q.J130000.2451.07G79) to financially support the research work conducted.

References

  1. Abdullah, W. N. A. S. Lau, W. J. Aziz, F. Emadzadeh, D. and Ismail, A. F. (2018), "Performance of nanofiltration like forward-osmosis membranes for aerobically treated palm oil mill effluent", Chem. Eng. Technol., 41(2), 303-312. https://doi.org/10.1002/ceat.201700339
  2. Ambrosi, A. and Tessaro, I. C. (2013), "Study on potassium permanganate chemical treatment of discarded reverse osmosis membranes aiming their reuse", Sep. Sci. Technol., 48(10), 1537-1543. https://doi.org/10.1080/01496395.2012.745876
  3. Drioli, E. Giorna, L. and Fontananova, E. (2017), "Comprehensive Membrane Science and Technology", Elsevier Science (Vol. 2). Oxford, United Kingdom.
  4. Garcia-Pacheco, R. Landaburu-Aguirre, J. Molina, S. Rodriguez-Saez, L. Teli, S. B. and Garcia-Calvo, E. (2015), "Transformation of end-of-life RO membranes into NF and UF membranes: Evaluation of membrane performance", J. Membr. Sci., 495, 305-315. https://doi.org/10.1016/j.memsci.2015.08.025.
  5. Garcia-Pacheco, R. Landaburu-Aguirre, J. Terrero-Rodriguez, P. Campos, E. Molina-Serrano, F. Rabadan, J. and Garcia-Calvo, E. (2018), "Validation of recycled membranes for treating brackish water at pilot scale", Desalination, 433, 199-208. https://doi.org/10.1016/j.desal.2017.12.034.
  6. Goh, P. S. Lau, W. J. Othman, M. H. D. and Ismail, A. F. (2018), "Membrane fouling in desalination and its mitigation strategies", Desalination, 425, 130-155. https://doi.org/10.1016/j.desal.2017.10.018.
  7. Khulbe, K. C. Feng, C. Y. Matsuura, T. and Ismail, A. F. (2012), "Progresses in membrane and advanced oxidation processes for water treatment", Membr. Water Treat., 3(3), 181-200. https://doi.org/10.12989/mwt.2012.3.3.181.
  8. Landaburu-Aguirre, J. Garcia-Pacheco, R. Molina, S. Rodriguez-Saez, L. Rabadan, J. and Garcia-Calvo, E. (2016), "Fouling prevention, preparing for re-use and membrane recycling. Towards circular economy in RO desalination", Desalination, 393, 16-30. https://doi.org/10.1016/j.desal.2016.04.002.
  9. Lau, W. J. Goh, P. S. Ismail, A. F. and Lai, S. O. (2014), "Ultrafiltration as a pretreatment for seawater desalination: A review", Membr. Water Treat., 5(1), 15-29. https://doi.org/10.12989/mwt.2014.5.1.015
  10. Lawler, W. Antony, A. Cran, M. Duke, M. Leslie, G. and Le-Clech, P. (2013), "Production and characterisation of UF membranes by chemical conversion of used RO membranes", J. Membr. Sci., 447, 203-211. https://doi.org/10.1016/j.memsci.2013.07.015.
  11. Lawler, W. Bradford-Hartke, Z. Cran, M. J. Duke, M. Leslie, G. Ladewig, B. P. and Le-Clech, P. (2012), "Towards new opportunities for reuse, recycling and disposal of used reverse osmosis membranes", Desalination, 299, 103-112. https://doi.org/10.1016/j.desal.2012.05.030.
  12. Lee, K. P. Arnot, T. C. and Mattia, D. (2011), "A review of reverse osmosis membrane materials for desalination-Development to date and future potential", J. Membr. Sci., 370(1-2), 1-22. https://doi.org/10.1016/j.memsci.2010.12.036.
  13. Misdan, N. Lau, W. J. Ismail, A. F. and Matsuura, T. (2013), "Formation of thin film composite nanofiltration membrane: Effect of polysulfone substrate characteristics", Desalination, 329, 9-18. https://doi.org/10.1016/j.desal.2013.08.021.
  14. Ng, Z. Chong, C. Lau, W. Karaman, M. and Ismail, A. F. (2019), "Boron removal and antifouling properties of thin-film nanocomposite membrane incorporating PECVD-modified titanate nanotubes", J. Chem. Technol. Biotech., 94(9), 2772- 2782. https://doi.org/10.1002/jctb.6044.
  15. Pontie, M. Awad, S. Tazerout, M. Chaouachi, O. and Chaouachi, B. (2017), "Recycling and energy recovery solutions of end-of-life reverse osmosis (RO) membrane materials: A sustainable approach", Desalination, 423(August), 30-40. https://doi.org/10.1016/j.desal.2017.09.012
  16. Rodriguez, J. J. Jimenez, V. Trujillo, O. and Veza, J. (2002), "Reuse of reverse osmosis membranes in advanced wastewater treatment", Desalination, 150(3), 219-225. https://doi.org/10.1016/S0011-9164(02)00977-3
  17. Runte, G. (2016), Seawater and Brackish Water Desalination, BCC Research, MA, USA. www.bccresearch.com.
  18. Simon, A. and Nghiem, L. D. (2014), "Effects of hypochlorite exposure on morphology and trace organic contaminant rejection by NF/RO membranes", Membr. Water Treat., 5(4), 235-250. https://doi.org/10.12989/mwt.2014.5.4.235
  19. Tan, Y. H. Lau, W. J. Goh, P. S. Yusof, N. and Ismail, A. F. (2018), "Nanofiltration of aerobically-treated palm oil mill effluent: Characterization of the size of colour compounds using synthetic dyes and polyethylene glycols", J. Eng. Sci. Technol., 13(1), 1- 10.
  20. Wang, H. Yeager, G. W. Suriano, J. A. and Rice, S. T. (2012), Thin Film Composite Membranes Incorporating Carbon Nanotubes, General Electric Co., New York, USA.

Cited by

  1. Cost analysis and scheduling of the desalination vessel using reverse osmosis technology vol.12, pp.4, 2021, https://doi.org/10.12989/mwt.2021.12.4.177