DOI QR코드

DOI QR Code

Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory

  • Taherifar, Reza (Department of Civil Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University) ;
  • Zareei, Seyed Alireza (Department of Civil Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University) ;
  • Bidgoli, Mahmood Rabani (Department of Civil Engineering, Jasb Branch, Islamic Azad University) ;
  • Kolahchi, Reza (Institute of Research and Development, Duy Tan University)
  • 투고 : 2020.03.19
  • 심사 : 2020.09.26
  • 발행 : 2020.10.10

초록

This article deals with the dynamic analysis in pad concrete foundation containing Silica nanoparticles (SiO2) subject to seismic load. In order to control the foundation smartly, a piezoelectric layer covered the foundation. The weight of the building by a column on the foundation is assumed with an external force in the middle of the structure. The foundation is located in soil medium which is modeled by spring elements. The Mori-Tanaka law is utilized for calculating the equivalent mechanical characteristics of the concrete foundation. The Kevin-Voigt model is adopted to take into account the structural damping. The concrete structure is modeled by a thick plate and the governing equations are deduced using Hamilton's principle under the assumption of higher-order shear deformation theory (HSDT). The differential quadrature method (DQM) and the Newmark method are applied to obtain the seismic response. The effects of the applied voltage to the smart layer, agglomeration and volume percent of SiO2 nanoparticles, damping of the structure, geometrical parameters and soil medium of the structure are assessed on the dynamic response. It has been demonstrated by the numerical results that by applying a negative voltage, the dynamic deflection is reduced significantly. Moreover, silica nanoparticles reduce the dynamic deflection of the concrete foundation.

키워드

참고문헌

  1. Amnieh, H.B., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. DOI: 10.1016/j.conbuildmat.2018.04.140.
  2. Azmi, M., Kolahchi, R. and Bidgoli, M.R. (2019), "Dynamic analysis of concrete column reinforced with Sio 2 nanoparticles subjected to blast load", Adv. Concr. Constr., 7, 51-63. DOI: 10.12989/acc.2019.7.1.051.
  3. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concret, 18, 1053-1063, DOI: https://doi.org/10.12989/cac.2016.18.6.1053
  4. Duc, N.D. and Tung, H.V. (2011), "Mechanical and thermal postbuckling of higher order shear deformable functionally graded plates on elastic foundations", Compos. Struct., 93, 2874-2881,https://doi.org/10.1016/j.compstruct.2011.05.017.
  5. Fakhar, M.H., Fakhar, A. and Tabatabaei, H. (2019), "Analysis of critical fluid velocity and heat transfer in temperature-dependent nanocomposite pipes conveying nanofluid subjected to heat generation, conduction, convection and magnetic field", Steel Compos. Struct., 30, 281-292. DOI: https://doi.org/10.12989/scs.2019.30.3.281
  6. Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by SiO2nanoparticles considering agglomeration effects", Comput. Concr., 21, 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
  7. Haghighi, M.S., Keikha, R. and Heidari, A. (2018), "Dynamic analysis of immersion concrete pipes in water subjected to earthquake load using mathematical methods", Earthq. Struct., 15, 361-367. DOI: 10.12989/eas.2018.15.4.361.
  8. Hieu, P.T. and Tung, H.V. (2020), "Thermomechanical postbuckling of pressure-loaded CNT-reinforced composite cylindrical shells under tangential edge constraints and various temperature conditions", Polym. Compos., 41, 244-257. https://doi.org/10.1002/pc.25365.
  9. Hou, L., et al. (2019), "Effect of nanoparticles on foaming agent and the foamed concrete", Constr. Build Mater., 227, 116698. DOI: 10.1016/j.conbuildmat.2019.116698.
  10. Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dyn. Earthq. Eng., DOI: 10.1016/j.soildyn.2018.04.002.
  11. Hosseini, P., et al. (2009), "Use of Nano-SiO2 to Improve Microstructure and Compressive Strength of Recycled Aggregate Concretes", Nanotechnol. Construct., 3, 215-221. DOI: 10.1007/978-3-642-00980-8_29.
  12. Kargar, M. and Bidgoli, M.R. (2018), "Mathematical modeling of smart nanoparticles-reinforced concrete foundations: Vibration analysis", 27(4), 465-477. Steel Compos. Struct., https://doi.org/10.12989/scs.2018.27.4.465.
  13. Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186, https://doi.org/10.1016/j.compstruct.2016.08.032.
  14. Lei, Z.X., Liew, K.M. and Yu, J.L. (2013), "Large deflection analysis of functionally graded carbon nanotubereinforced composite plates by the element-freekp-Ritz method", Comput. Methods Appl. Mech. Eng., 256, 189-199. DOI: https://doi.org/10.1016/j.cma.2012.12.007.
  15. Lei, Z.X., Zhang, L.W. and Liew K.M. (2016), "Analysis of laminated CNT reinforced functionally graded plates using the element-free kp-Ritz method", Compos. B. Eng., 84, 211-221, https://doi.org/10.1016/j.compositesb.2015.08.081.
  16. Liew, K.M., Pan, Z.Z. and Zhnag, L.w. (2019), "An overview of layerwise theories for composite laminates and structures: Development, numerical implementation and application", Compos. Struct., 216, 240-259., https://doi.org/10.1016/j.compstruct.2019.02.074.
  17. Long, V.T. and Tung, H.V. (2019) "Thermomechanical postbuckling behavior of CNT-reinforced composite sandwich plate models resting on elastic foundations with elastically restrained unloaded edges", Therm. Stress., 42, 658-682. https://doi.org/10.1080/01495739.2019.1571972.
  18. Maleki, M. and Bidgoli, M.R. (2018), "Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2nanoparticles using DQ and Newmark methods", Comput. Concr., 21, 717-726. https://doi.org/10.12989/cac.2018.21.6.717.
  19. Maleki, M., Bidgoli, M.R. and Kolahchi, R. (2019), "Earthquake response of nanocomposite concrete pipes conveying and immersing in fluid using numerical methods", Comput. Concret., 24, 125-135. https://doi.org/10.12989/cac.2019.24.2.125.
  20. Motezaker, M. and Kolahchi, R. (2017), "Seismic response of SiO2nanoparticles-reinforced concrete pipes based on DQ and newmark methods", Comput. Concret, 19, 745-753. https://doi.org/10.12989/cac.2017.19.6.745.
  21. Nouri, A.Z. (2017), "Mathematical modeling of concrete pipes reinforced with CNTs conveying fluid for vibration and stability analyses", Comput. Concret, 18, 325-331. https://doi.org/10.12989/cac.2017.19.3.325.
  22. Nouri, A.Z. (2018), "Seismic response of soil foundation surrounded Fe2O3 nanoparticles-reinforced concrete pipes conveying fluid", Soil Dyn. Earthq. Eng., 106, 53-59. DOI: 10.1016/j.soildyn.2017.12.009.
  23. Pan, Z.Z., Zhang, L.W. and Liew, K.M. (2019), "Modeling geometrically nonlinear large deformation behaviors of matrix cracked hybrid composite deep shells containing CNTRC layers", Comput. Method. Appl. M., 355, 753-778. https://doi.org/10.1016/j.cma.2019.06.04.
  24. Reddy, J.N. (2002), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, Second Edition, CRC Press,.
  25. Shen, H.S. (2000), "Nonlinear bending of shear deformable lami-nated plates under transverse and in-plane loads and resting on elastic foundations", Compos. Struct., 50, 131-142. https://doi.org/10.1016/S0263-8223(00)00088-X.
  26. Shi, D.L. and Feng, X.Q. (2004), "The Effect ofNanotube Waviness and Agglomeration on the Elastic Property of Carbon Nanotube-Reinforced Composties", J. Eng. Mat. Tech. - ASME, 126, 250-270, DOI: https://doi.org/10.1115/1.1751182
  27. Su, Y., et al. (2016), "Influences of nano-particles on dynamic strength of ultra-high performance concrete", Compos. Part B Eng., 91, 595-609. DOI: 10.1016/j.compositesb.2016.01.044.
  28. Sharifi, M., Kolahchi, R. and Bidgoli, M.R. (2018), "Dynamic analysis of concrete beams reinforced with Tio2nano particles under earthquake load", Wind Struct., 26(1), 1-9. https://doi.org/10.12989/was.2018.26.1.001.
  29. Shokravi, M. (2017), "Vibration analysis of silica nanoparticles-reinforced concrete beams considering agglomeration effects", Comput. Concret., 19(3), 333-338. https://doi.org/10.12989/cac.2017.19.3.333.
  30. Tiersten, H.F. (1969), Linear Piezoelectric Plate Vibrations, Plenum Press, New York.
  31. Tung, H.V. (2017), "Thermal buckling and postbuckling behaviour of functionally graded carbon-nanotube-reinforced composite plates resting on elastic foundations with tangential-edge restraints", Therm. Stress., 40, 641-663. https://doi.org/10.1080/01495739.2016.1254577.
  32. Tung, H.V. and Trang, L.T.N. (2020), "Thermal postbuckling of shear deformable CNT-reinforced composite plates with tangentially restrained edges and temperature-dependent properties", J. Thermoplast. Compos. Mater., 33, 97-124. https://doi.org/10.1177/0892705718804588.
  33. Younis, K.H. and Mustafa, S.M. (2018), "Feasibility of Using Nanoparticles of SiO 2 to Improve the Performance of Recycled Aggregate Concrete", Adv. Mater. Sci. Eng., DOI: 10.1155/2018/1512830.
  34. Zamani, A., Kolahchi, R. and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concret, 20, 671-682. https://doi.org/10.12989/cac.2017.20.6.671.
  35. Zarei, M.S., et al. (2017), "Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2nanoparticles and fiber reinforced polymer (FRP) layer", Soil Dyn. Earthq. Eng., 103, 76-85. DOI: 10.1016/j.soildyn.2017.09.009.
  36. Zaghloul, S.A. and Kennedy, J.B. (1975), "Nonlinear behavior of symmetrically laminated plates", J. Appl. Mech. T. - ASME 931, 236-234. DOI: https://doi.org/10.1115/1.3423532.
  37. Zhang, L.W., (2017), "Geometrically nonlinear large deformation of CNT-reinforced composite plates with internal column supports", J. Model. Mech. Mater., 1, https://doi.org/10.1515/jmmm-2016-0154.
  38. Zhang, L.W., (2017), "On the study of the effect of in-plane forces on the frequency parameters of CNT-reinforced composite skew plates", Compos. Struct., 160, 824-837. https://doi.org/10.1016/j.compstruct.2016.10.116.
  39. Zhang, L.W. (2017), "An element-free based IMLS-Ritz method for buckling analysis of nanocomposite plates of polygonal planform", Eng. Anal. Bound. Elem., 77, 10-25. https://doi.org/10.1016/j.enganabound.2017.01.004.
  40. Zhang, L.W., Liew, K.M. and Jiang Z. (2016), "An element-free analysis of CNT-reinforced composite plates with column supports and elastically restrained edges under large deformation", Compos. B. Eng., 95, 18-28. https://doi.org/10.1016/j.compositesb.2016.03.078.
  41. Zhang, L.W. and Liew, K.M. (2016), "Postbuckling analysis of axially compressed CNT reinforced functionally graded composite plates resting on Pasternak foundations using an element-free approach", Compos. Struct., 15, 40-51. https://doi.org/10.1016/j.compstruct.2015.11.031.
  42. Zhang, L.W. and Liew, K.M. (2016), "Element-free geometrically nonlinear analysis of quadrilateral functionally graded material plates with internal column supports", Compos. Struct., 147, 99-110. https://doi.org/10.1016/j.compstruct.2016.03.034.
  43. Zhang, L.W., Liew, K.M. and Reddy J.N. (2016), "Postbuckling of carbon nanotube reinforced functionally graded plates with edges elastically restrained against translation and rotation under axial compression", Comput Method. Appl M., 298, 1-28. https://doi.org/10.1016/j.cma.2015.09.016.
  44. Zhang, L.W., Liew, K.M. and Reddy J.N. (2016), "Postbuckling analysis of bi-axially compressed laminated nanocomposite plates using the first-order shear deformation theory", Compos. Struct., 152, 418-431. https://doi.org/10.1016/j.compstruct.2016.05.040.
  45. Zhang, L.W., Liew, K.M. and Reddy J.N. (2016), "Postbuckling behavior of bi-axially compressed arbitrarily straight-sided quadrilateral functionally graded material plates", Comput Method. Appl Mech Eng. Compos. Struct., 300, 593-610. https://doi.org/10.1016/j.cma.2015.11.030.
  46. Zhang, L.W., Liu, W.H. and Liew, K.M. (2016), "Geometrically nonlinear large deformation analysis of triangular CNT-reinforced composite plates", Int. J. Nonlin. Mech., 86, 122-132. https://doi.org/10.1016/j.ijnonlinmec.2016.08.004.
  47. Zhang, L.W. and Selim, B.A. (2017), "Vibration analysis of CNT-reinforced thick laminated composite plates based on Reddy's higher-order shear deformation theory", Compos. Struct., 160, 689-705. https://doi.org/10.1016/j.compstruct.2016.10.102.
  48. Zhang, L.W., Song, Z.G. and Liew, K.M. (2016), "Optimal shape control of CNT reinforced functionally graded composite plates using piezoelectric patches", Compos. B. Eng., 85, 140-149. https://doi.org/10.1016/j.compositesb.2015.09.044.
  49. Zhang, L.W., Song, Z.G. and Liew, K.M. (2016), "Computation of aerothermoelastic properties and active flutter control of CNT reinforced functionally graded composite panels in supersonic airflow", Comput Method. Appl. M., 300, 427-441. https://doi.org/10.1016/j.cma.2015.11.029.
  50. Zhang, L.W., Song, Z.G., Qiao P. and Liew, K.M. (2017), "Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads", Comput Method. Appl. M., 313, 889-903. https://doi.org/10.1016/j.cma.2016.10.020.
  51. Zhang, L.W. and Xiao, L.N. (2017), "Mechanical behavior of laminated CNT-reinforced composite skew plates subjected to dynamic loading", Compos. B. Eng., 122, 219-230. https://doi.org/10.1016/j.compositesb.2017.03.041.
  52. Zhang, L.W., Xiao, L.N., Zou, G.L. and Liew, K.M. (2016), "Elastodynamic analysis of quadrilateral CNT-reinforced functionally graded composite plates using FSDT element-free method", Compos. Struct., 148, 144-154. https://doi.org/10.1016/j.compstruct.2016.04.006.
  53. Zhang, L.W., Zhang, Y., Zou, G.L. and Liew, K.M. (2016), "Free vibration analysis of triangular CNT-reinforced composite plates subjected to in-plane stresses using FSDT element-free method", Compos. Struct., 149, 247-260. https://doi.org/10.1016/j.compstruct.2016.04.019.
  54. Zhang, M. and Yu, S. (2011), "Impact property of concrete containing nano-particles for pavement", Adv. Mat. Res., 33, 417-420. DOI: 10.4028/www.scientific.net/AMR.250-253.417.