References
- Barua, K. and Bhowmick, A.K. (2019), "Nonlinear seismic performance of code designed perforated steel plate shear walls", Steel Compos. Struct., 31(1), 85-98. https://doi.org/10.12989/scs.2019.31.1.085.
- Berman, J. and Bruneau, M. (2003), "Plastic analysis and design of steel plate shear walls", J. Struct. Eng., 129, 1448-1456. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:11(1448).
- Berman, J.W. (2011), "Seismic behavior of code designed steel plate shear walls", Eng. Struct., 33(1), 230-244. https://doi.org/10.1016/j.engstruct.2010.10.015.
- Berman, J.W., Celik, O.C. and Bruneau, M. (2005), "Comparing hysteretic behavior of light-gauge steel plate shear walls and braced frames", Eng. Struct., 27(3), 475-485. https://doi.org/10.1016/j.engstruct.2004.11.007.
- BHRC. (2014), Iranian code of practice for seismic resistant design of buildings: "standard 2800" , Edition 4th. Iran (in Persian).
- Brando, G. and De Matteis, G. (2011), "Experimental and numerical analysis of a multi-stiffened pure aluminium shear panel", Thin-Wall. Struct., 49(10), 1277-1287. https://doi.org/10.1016/j.tws.2011.05.007.
- Brando, G. and De Matteis, G. (2013), "Buckling resistance of perforated steel angle members", J. Constr. Steel Res., 81, 52-61. https://doi.org/10.1016/j.jcsr.2012.10.009.
- Brando, G. and De Matteis, G. (2014), "Design of low strength-high hardening metal multi-stiffened shear plates", Eng. Struct., 60, 2-10. https://doi.org/10.1016/j.engstruct.2013.12.005.
- Curkovic, I., Skejic, D., Dzeba, I. and De Matteis, G. (2019), "Seismic performance of composite plate shear walls with variable column flexural stiffness", Steel Compos. Struct., 33(1), 851-868. https://doi.org/10.12989/scs.2019.33.1.851.
- De Matteis, G., Brando, G., Caldoso, F. and D'Agostino, F. (2018), "Seismic performance of dual steel frames with dissipative metal shear panels", Ingegneria Sismica, 35(2), 124-141.
- Deng, E.F., Zong, L. and Ding, Y. (2019), "Numerical and analytical study on initial stiffness of corrugated steel plate shear walls in modular construction", Steel Compos. Struct., 32(3), 347-359. https://doi.org/10.12989/scs.2019.32.3.347.
- Dhar, M.M. and Bhowmick, A.K. (2016), "Seismic response estimation of steel plate shear walls using nonlinear static methods", Steel Compos. Struct., 20(4), 777-799. https://doi.org/10.12989/scs.2016.20.4.777.
- Driver, R.G., Kulak, G.L., Kennedy, D.J.L. and Elwi, A.E. (1998), "Cyclic test of four-story steel plate shear wall", J. Struct. Eng., 124, 112-120. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:2(112)
- Elgaaly, M. (1998), "Thin steel plate shear walls behavior and analysis", Thin-Wall. Struct., 32(1-3), 151-180. https://doi.org/10.1016/S0263-8231(98)00031-7.
- Farzampour, A., Laman, J.A. and Mofid, M. (2015), "Behavior prediction of corrugated steel plate shear walls with openings", J. Constr. Steel Res., 114, 258-268. https://doi.org/10.1016/j.jcsr.2015.07.018.
- Farzampour, A., Mansouri, I. and Hu, J.W. (2018a), "Seismic behavior investigation of the corrugated steel shear walls considering variations of corrugation geometrical characteristics", Int. J. Steel Struct., 18(4), 1297-1305. https://doi.org/10.1007/s13296-018-0121-z.
- Farzampour, A., Mansouri, I., Lee, C.H., Sim, H.B. and Hu, J.W. (2018b), "Analysis and design recommendations for corrugated steel plate shear walls with a reduced beam section", Thin-Wall. Struct., 132, 658-666. https://doi.org/10.1016/j.tws.2018.09.026.
- Farzampour, A. and Yekrangnia, M. (2014), "On the behavior of corrugated steel shear walls with and without openings", Proceedings of the 2nd European Conference on Earthquake Engineering and Seismology, Turkey.
- FEMA-P695. (2009), Quantification of building seismic performance factors. Washington D.C.
- FEMA-P1051. (2015), NEHRP recommended seismic provisions: design examples. Washington D.C.
- Gholhaki, M. and Ghadaksaz, M.B. (2016), "Investigation of the link beam length of a coupled steel plate shear wall", Steel Compos. Struct., 20(1), 107-125. https://doi.org/10.12989/scs.2016.20.1.107.
- Ghosh, S. and Kharmale, S.B. (2010), "Research on steel plate shear wall: Past, present and future, Structural Steel and Castings: Shapes and Standards, Properties and Applications", Nova Science Publishers Inc.
- Han, Q., Zhang, Y., Wang, D. and Sakata, H. (2019), "Seismic behavior of buckling-restrained steel plate shear wall with assembled multi-RC panels", J. Constr. Steel Res., 157, 397-413. https://doi.org/10.1016/j.jcsr.2019.02.026.
- Jalali, S.A. and Banazadeh, M. (2016), "Development of a new deteriorating hysteresis model for seismic collapse assessment of thin steel plate shear walls", Thin-Wall. Struct., 106, 244-257. https://doi.org/10.1016/j.tws.2016.05.008.
- Kanvinde, A.M. and Grilli, D.A. (2012), IBC SEAOC Structural/Seismic Design Manual Vol. 4, Examples for Steel-Frame Buildings. Structural Engineers Association of California Sacramento, CA
- Liu, W.Y., Li, G.Q. and Jiang, J. (2018), "Capacity design of boundary elements of beam-connected buckling restrained steel plate shear wall", Steel Compos. Struct., 29(2), 231-242. https://doi.org/10.12989/scs.2018.29.2.231.
- Ma, Z.Y., Hao, J.P. and Yu, H.S. (2018), "Shaking-table test of a novel buckling-restrained multi-stiffened low-yield-point steel plate shear wall", J. Constr. Steel Res., 145, 128-136. https://doi.org/10.1016/j.jcsr.2018.02.009.
- Ozcelik, Y. and Clayton, P.M. (2017), "Strip model for steel plate shear walls with beam-connected web plates", Eng. Struct., 136, 369-379. https://doi.org/https://doi.org/10.1016/j.engstruct.2017.01.051.
- Paslar, N., Farzampour, A. and Hatami, F. (2020a), "Infill plate interconnection effects on the structural behavior of steel plate shear walls", Thin-Wall. Struct., 149. https://doi.org/10.1016/j.tws.2020.106621.
- Paslar, N., Farzampour, A. and Hatami, F. (2020b), "Investigation of the infill plate boundary condition effects on the overall performance of the steel plate shear walls with circular openings", Struct., 27, 824-836. https://doi.org/10.1016/j.istruc.2020.06.031.
- Pavir, A. and Shekastehband, B. (2017), "Hysteretic behavior of coupled steel plate shear walls", J. Constr. Steel Res., 133, 19-35. https://doi.org/10.1016/j.jcsr.2017.01.019.
- Phillips, A.R. and Eatherton, M.R. (2018), "Large-scale experimental study of ring shaped-steel plate shear walls", J. Struct. Eng., 144(8). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002119.
- Qin, Y., Lu, J.Y., Huang, L.C.X. and Cao, S. (2017), "Flexural behavior of beams in steel plate shear walls", Steel Compos. Struct., 23(4), 473-481. https://doi.org/10.12989/scs.2017.23.4.473.
- Qiu, J., Zhao, Q., Yu, C. and Li, Z. (2018), "Experimental studies on cyclic behavior of corrugated steel plate shear walls", J. Struct. Eng., 144(11). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002165.
- Qureshi, R.K. and Bruneau, M. (2019), "Behavior of steel plate shear walls subjected to repeated synthetic ground motions", J. Struct. Eng., 145(4). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002281.
- Roberts, T.M. and Ghomi, S.S. (1991), "Hysteretic characteristics of unstiffened plate shear panels", Thin-Walled Struct., 12(2), 145-162. https://doi.org/10.1016/0263-8231(91)90061-M.
- Sabouri-Ghomi, S., Ahouri, E., Sajadi, R., Alavi, M., Roufegarinejad, A. and Bradford, M.A. (2012), "Stiffness and strength degradation of steel shear walls having an arbitrarily-located opening", J. Constr. Steel Res., 79, 91-100. https://doi.org/10.1016/j.jcsr.2012.07.017.
- Thorburn, L.J., Kulak, G.L. and Montgomery, C.J. (1983), "Analysis of steel plate shear walls", Structural Engineering Report 107, University of Alberta, Canada.
- Timler, P.A. and Kulak, G.L. (1983), "Experimental study of steel plate shear walls", Structural Engineering, Report 114, University of Alberta, Canada.
- Youssef, N., Wilkerson, R., Fischer, K. and Tunick, D. (2010), "Seismic performance of a 55-storey steel plate shear wall", Struct. Des. Tall Spec. Build., 19(1-2), 139-165. https://doi.org/10.1002/tal.545.
- Zhao, Q., Sun, J., Li, Y. and Li, Z. (2017), "Cyclic analyses of corrugated steel plate shear walls", Struct. Des. Tall Spec. Build., 26(16). https://doi.org/10.1002/tal.1351.