References
- AL-Bedoor, B.O. and Khulief, Y.A. (1996), "An approximate analytical solution of beam vibrations during axial motion", J. Sound Vib., 192(1), 159-171. https://doi.org/10.1006/jsvi.1996.0181.
- Alesadi, A., Galehdari, M. and Shojaee, S. (2017a), "Free vibration and buckling analysis of cross-ply laminated composite plates using Carrera's unified formulation based on Isogeometric approach", Comput. Struct., 183, 38-47. https://doi.org/10.1016/j.compstruc.2017.01.013.
- Alesadi, A., Galehdari, M. and Shojaee, S. (2017b), "Free vibration and buckling analysis of composite laminated plates using layerwise models based on isogeometric approach and Carrera unified formulation", Mech. Adv. Mater. Struct., 25, 1018-1032. https://doi.org/10.1080/15376494.2017.1342883.
- Alesadi, A., Ghazanfari, S. and Shojaee, S. (2019), "B-spline finite element approach for the analysis of thin-walled beam structures based on 1D refined theories using carrera unified formulation", Thin-Wall. Struct., 130, 313-320. https://doi.org/10.1016/j.tws.2018.05.016
- Alesadi, A., Shojaee, S. and Hamzehei-Javaran, S. (2020), "Spherical Hankel-based free vibration analysis of cross-ply laminated plates using refined finite element theories", Iran. J. Sci. Technol. Trans. Civ. Eng., 44, 127-137. https://doi.org/10.1007/s40996-019-00242-6
- Bathe, K.J. (1996), Finite Element Procedure, Prentice Hall.
- Carrera, E. (1995), "A class of two dimensional theories for multilayered plates analysis", Atti della accad, Delle Sci. Di Torino. Cl. Di Sci. Fis. Mat. e Nat, 19, 1-39.
- Carrera, E., Brischetto, S. and Robaldo, A. (2008), "Variable kinematic model for the analysis of functionally graded material plates", AIAA J., 46, 194-203. https://doi.org/10.2514/1.32490.
- Carrera, E., Filippi, M., Mahato, P.K.R. and Pagani, A. (2015), "Advanced models for free vibration analysis of laminated beams with compact and thin-walled open/closed sections", J. Comp. Mater., 49(17), 2085-2101. https://doi.org/10.1177/0021998314541570.
- Carrera, E., Filippi, M., Mahato, P.K.R. and Pagani, A. (2016a), "Accurate static response of single- and multi-cell laminated box beams", Compos. Struct., 136, 372-383. https://doi.org/10.1016/j.compstruct.2015.10.020.
- Carrera, E., Filippi, M., Mahato, P.K.R. and Pagani, A. (2016b), "Free-vibration tailoring of single- and multi-bay laminated box structures by refined beam theories", Thin-Wall. Struct., 109, 40-49. https://doi.org/10.1016/j.tws.2016.09.014.
- Carrera, E. and Giunta, g. (2010), "Refined beam theories based on a unified formulation", Int. J. Appl. Mech., 2, 117-143. https://doi.org/10.1142/S1758825110000500.
- Carrera, E., Giunta, G. and Petrolo, M. (2011), Beam Structures: Classical and Advanced Theories, John Wiley & Sons Ltd, Chichester, West Sussex, United Kingdom. https://doi.org/10.1002/9781119978565.
- Carrera, E., Pagani, A. and Banerjee J.R. (2016), "Linearized buckling analysis of isotropic and composite beam-columns by carrera unified formulation and dynamic stiffness method", Mech. Adv. Mater. Struct., 23(9), 1092-1103. https://doi.org/10.1080/15376494.2015.1121524.
- Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9, 87-140. https://doi.org/10.1007/BF02736649.
- Carrera, E. (2003), "Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking", Arch. Comput. Meth. Eng., 10, 215-296. https://doi.org/10.1007/BF02736224.
- Catapano, A., Giunta, G., Belouettar, S. and Carrera, E. (2011), "Static analysis of laminated beams via a unified formulation", Compos. Struct., 94, 75-83. https://doi.org/10.1016/j.compstruct.2011.07.015
- Chakraborty, G., Mallik, A.K. and Hatwal, H. (1999), "Non-linear vibration of a traveling beam", Int. J. Nonlinear Mech., 34(4), 655-670. https://doi.org/10.1016/S0020-7462(98)00017-1.
- Daraei, B., Shojaee, S. and Hamzehei-Javaran, S. (2020), "Free vibration analysis of composite laminated beams with curvilinear fibers via refined theories", Mech. Adv. Mater. Struct., https://doi.org/10.1080/15376494.2020.1797959.
- Ghayesh, M.H. and Amabili, M. (2013), "Steady-state transverse response of an axially moving beam with time-dependent axial speed", Int. J. Non-Linear Mech., 49, 40-49. https://doi.org/10.1016/j.ijnonlinmec.2012.08.003.
- Ghayesh, M.H. and Balar, S. (2010), "Non-linear parametric vibration and stability analysis for two dynamic models of axially moving Timoshenko beams", Appl. Math. Model., 34(10), 2850-2859. https://doi.org/10.1016/j.apm.2009.12.019.
- Ghayesh, M.H. and Khadem, S.E. (2008), "Rotary inertia and temperature effects on non-linear vibration, steady-state response and stability of an axially moving beam with time-dependent velocity", Int. J. Mech. Sci., 50(3), 389-404. https://doi.org/10.1016/j.ijmecsci.2007.10.006.
- Ghazanfari, S., Hamzehei-Javaran, S., Alesadi, A. and Shojaee, S. (2019), "Free vibration analysis of cross-ply laminated beam structures using refined beam theories and B-spline basis functions", Mech. Adv. Mater. Struct., https://doi.org/10.1080/15376494.2019.1574939.
- Ghorbanpour Arani, A., Haghparast, E. and BabaAkbar Zarei, H. (2017), "Vibration analysis of functionally graded nanocomposite plate moving in two directions", Steel Compos. Struct., 23(5), 529-541. https://doi.org/10.12989/scs.2017.23.5.529.
- Giunta, G., Belouettar, S., Nasser, H., Kiefer-Kamal, E.H. and Thielen, T. (2015), "Hierarchical models for the static analysis of three-dimensional sandwich beam structures", Compos. Struct., 133, 1284-1301. https://doi.org/10.1016/j.compstruct.2015.08.049.
- Giunta, G., Metla, N., Koutsawa, Y. and Belouettar, S. (2013), "Free vibration and stability analysis of three-dimensional sandwich beams via hierarchical models", Compos. Part B Eng., 47, 326-338. https://doi.org/10.1016/j.compositesb.2012.11.017.
- Ho-Huu, V., Vo-Duy, T., Duong-Gia, D. and Nguyen-Thoi, T. (2018), "An efficient procedure for lightweight optimal design of composite laminated beams", Steel Compos. Struct., 27(3), 297-310. https://doi.org/10.12989/scs.2018.27.3.297.
- Hui, Y., Giunta, G., Belouettar, S., Huang, Q., Hu, H. and Carrera, E. (2017), "A free vibration analysis of three-dimensional sandwich beams using hierarchical one-dimensional finite elements", Compos. Part B Eng., 110, 7-19. https://doi.org/10.1016/j.compositesb.2016.10.065.
- Hwang, S.J. and Perkins, N.C. (1992), "Supercritical stability of an axially moving beam Part II: Vibration and stability analysis", J. Sound Vib., 154, 397-409. https://doi.org/10.1016/0022-460X(92)90775-S.
- Kahya, V., Karaca, S. and Vo, T. (2019), "Shear-deformable finite element for free vibrations of laminated composite beams with arbitrary lay-up", Steel Compos. Struct., 33, 473-487. https://doi.org/10.12989/scs.2019.33.4.473.
- Kahya, V. and Turan, M. (2018), "Vibration and buckling of laminated beams by a multi-layer finite element model", Steel Comp. Struct., 28(4), 415-426. https://doi.org/10.12989/scs.2018.28.4.415
- Kong, L. and Parker, R.G. (2004), "Approximate eigensolutions of axially moving beams with small flexural stiffness", J. Sound Vib., 276(1-2), 459-469. https://doi.org/10.1016/j.jsv.2003.11.027
- Lee, U. and Jang, I. (2007), "On the boundary conditions for axially moving beams", J. Sound Vib., 306(3-5), 675-690. https://doi.org/10.1016/j.jsv.2007.06.039
- Lee, U., Kim, J. and Oh, H. (2004), "Spectral analysis for the transverse vibration of an axially moving Timoshenko beam", J. Sound Vib., 271(3-5), 685-703. https://doi.org/10.1016/S0022-460X(03)00300-6.
- Liu, B., Zhao, L., Ferreira, A.J.M., Xing, Y.F., Neves, A.M.A. and Wang, J. (2017), "Analysis of viscoelastic sandwich laminates using a unified formulation and a differential quadrature hierarchical finite element method", Compos. Part B Eng., 110, 185-192. https://doi.org/10.1016/j.compositesb.2016.11.028.
- Mokhtari, A. and Mirdamadi, H.R. (2018), "Study on vibration and stability of an axially translating viscoelastic Timoshenko beam: Non-transforming spectral element analysis", Appl. Math. Model., 56, 342-358. https://doi.org/10.1016/j.apm.2017.12.007.
- Oz, H.R. (2001), "On the vibrations of an axially traveling beam on fixed supports with variable velocity", J. Sound Vib., 239(3), 556-564. https://doi.org/10.1006/jsvi.2000.3077
- Oz, H.R. and Pakdemirli, M. (1999), "Vibrations of an axially moving beam with time dependent velocity", J. Sound Vib., 227(2), 239-257. https://doi.org/10.1006/jsvi.1999.2247.
- Ozkaya, E. and Oz, H.R. (2002), "Determination of natural frequencies and stability regions of axially moving beams using artificial neural networks method", J. Sound Vib., 252(4), 782-789. https://doi.org/10.1006/jsvi.2001.3991.
- Pagani, A., Carrera, E., Boscolo, M. and Banerjee, J.R. (2014), "Refined dynamic stiffness elements applied to free vibration analysis of generally laminated composite beams with arbitrary boundary conditions", Compos. Struct., 110, 305-316. https://doi.org/10.1016/j.compstruct.2013.12.010.
- Pagani, A., Carrera, E. and Ferreira, A.J.M. (2016), "Higher-order theories and radial basis functions applied to free vibration analysis of thin-walled beams", Mech. Adv. Mater. Struct., 23, 1080-1091. https://doi.org/10.1080/15376494.2015.1121555.
- Pagani, A. and Carrera, E. (2018), "Unified formulation of geometrically nonlinear refined beam theories", Mech. Adv. Mater. Struct., 25, 15-31. https://doi.org/10.1080/15376494.2016.1232458.
- Pakdemirli, M. and Ozkaya, E. (1998), "Approximate boundary layer solution of a moving beam problem", Math. Comput. Appl., 3(2), 93-100. https://doi.org/10.3390/mca3020093.
- Reddy, J.N. (2013), An Introduction to Continuum Mechanics, Cambridge University Press, Second Edition.
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton, FL, Second Edition.
- Rezaee, M. and Lotfan, S. (2015), "Non-linear nonlocal vibration and stability analysis of axially moving nanoscale beams with time-dependent velocity", Int. J. Mech. Sci., 96, 36-46. https://doi.org/10.1016/j.ijmecsci.2015.03.017.
- Simpson, A. (1973), "Transverse modes and frequencies of beams translating between fixed end supports", J. Mech. Eng. Sci., 15(3), 159-164. https://doi.org/10.1243/JMES_JOUR_1973_015_031_02.
- Siylianou, M. and Tabarrok, B. (1994), "Finite element analysis of an axially-moving beam, part II: Stability analysis", J. Sound Vib., 178(4), 455-481. https://doi.org/10.1006/jsvi.1994.1498.
- Wickert, J.A. and Mote, C.D. (1990), "Classical vibration analysis of axially moving continua", J. Appl. Mech., 57(3), 738-744. https://doi.org/10.1115/1.2897085
- Wickert, J.A. and Mote, C.D. (1988), "Current research on the vibration and stability of axially moving materials", Shock Vib. Dig., 20, 3-13. https://doi.org/10.1177/058310248802000503
- Wickert, J.A. (1992), "Non-linear vibration of a traveling tensioned beam", Int. J. Non-Linear Mech., 27(3), 503-517. https://doi.org/10.1016/0020-7462(92)90016-Z.
- Yan, Y., Carrera, E., Pagani, A., Kaleel, I. and Miguel, A.G.d. (2020), "Isogeometric analysis of 3D straight beam-type structures by Carrera Unified Formulation", Appl. Math. Model., 79, 768-792. https://doi.org/10.1016/j.apm.2019.11.003
Cited by
- Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.051
- On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2020, https://doi.org/10.12989/scs.2021.39.2.149