DOI QR코드

DOI QR Code

Behaviour of Uranyl Phosphate Containing Solid Waste During Thermal Treatment for the Purpose of Sentencing and Immobilisation: Preliminary Results

  • Received : 2020.02.13
  • Accepted : 2020.07.20
  • Published : 2020.09.30

Abstract

Thermal decomposition of the uranyl phosphate mineral phase meta-ankoleite (KUO2PO4·3H2O) has been considered in relation to high temperature thermal sintering for the immobilisation of a uranyl phosphate containing waste. Meta-ankoleite thermal decomposition was studied across the temperature range 25 - 1200℃ under an inert N2 atmosphere at 1 atm. It is shown that the meta-ankoleite mineral phase undergoes a double de-hydration event at 56.90 and 125.85℃. Subsequently, synthetically produced pure meta-ankoleite remains stable until at least 1150℃ exhibiting no apparent phase changes. In contrast, when present in a mixed waste the meta-ankoleite phase is not identifiable after thermal treatment indicating incorporation within the bulk waste either as an amorphous phase and/or as uranium oxide. Visual inspection of the waste post thermal treatment showed evidence of self-sintering owing to the presence of glass former materials, namely, silica (SiO2) and antimony(V) oxide (Sb2O5). Therefore, incorporation of the uranium phase into the waste as part of waste sentencing and immobilisation via high temperature sintering for the purpose of long-term disposal is deemed feasible.

Keywords

References

  1. D. Gorman-Lewis, P.C. Burns, and J.B. Fein, "Review of uranyl mineral solubility measurements", J. Chem. Thermodyn., 40(3), 335-352 (2008). https://doi.org/10.1016/j.jct.2007.12.004
  2. V. Vesely, V. Pekarek, and M. Abbrent, "A study on uranyl phosphates-III solubility products of uranyl hydrogen phosphate, uranyl orthophosphate and some alkali uranyl phosphates", J. Inorg. Nucl. Chem., 27(5), 1159-1166 (1965). https://doi.org/10.1016/0022-1902(65)80428-6
  3. M. Markovic, N. Pavkovic, and N.D. Pavkovic, "Precipitation of $NH_4UO_2PO_4{\cdot}3H_2O$ - solubility and structural comparison with alkali uranyl (2+) phosphates", J. Res. Natl. Bur. Stand., 93(4), 557-563 (1988). https://doi.org/10.6028/jres.093.148
  4. E.A. Dzik, H.L. Lobeck, L. Zhang, and P.C. Burns, "Thermodynamic properties of phosphate members of the meta-autunite group: A high temperature calorimetric study", J. Chem. Thermodyn., 114, 165-171 (2017). https://doi.org/10.1016/j.jct.2017.07.007
  5. L.V. Haverbeke, R. Vochten, and K.V. Springel, "Solubility and spectrochemical characteristics of synthetic chernikovite and meta-ankoleite", Mineral. Mag., 60(402), 759-766 (1996). https://doi.org/10.1180/minmag.1996.060.402.05
  6. J.B. Otto, "Separation of uranium from carbonate containing solutions thereof by direct precipitation", US Patent 4,410,497 (1983).
  7. International Atomic Energy Agency, "Uranium extraction technology", IAEA Technical Reports Series No. 359, IAEA, Vienna (1993).
  8. K.W. Kim, M.J. Kim, M.K. Oh, J. Kim, H.H. Sung, R.I. Foster, and K.Y. Lee, "Development of a treatment process and immobilization method for the volume reduction of uranium-bearing spent catalysts for final disposal", J. Nucl. Sci. Technol., 55(12), 1459-1472 (2018). https://doi.org/10.1080/00223131.2018.1516578
  9. R.I. Foster, K.W. Kim, M.K. Oh, and K.Y. Lee, "Effective removal of uranium via phosphate addition for the treatment of uranium laden process effluents", Water Res., 158, 82-93 (2019). https://doi.org/10.1016/j.watres.2019.04.021
  10. M.I. Ojovan and W.E. Lee, An Introduction to Nuclear Waste Immobilisation, 1st ed., Elsevier, Oxford (2005).
  11. M.I. Ojovan, Handbook of Advanced Radioactive Waste Conditioning Technologies, 1st ed., Woodhead Publishing, Cambridge (2011).
  12. J.H. Saling and A.W. Fentiman, Radioactive Waste Management, 2nd ed., Taylor and Francis, New York (2001).
  13. International Atomic Energy Agency, Conditioning of Low- and Intermediate-level Liquid and Solid Waste, IAEA Report, DCT No. 2017_C9_110 (2017).
  14. I.W. Donald, Waste Immobilization in Glass and Ceramic Based Hosts, Wiley, Chichester (2010).
  15. H.H. Sung, K.W. Kim, K.Y lee, J. Kim, and B.K. Seo, "An evaluation on the glass-ceramic solidification characteristics of uranium catalyst waste by green body pressure", Proc. of the Korean Radioactive Waste Society Fall Conference, 15(2), 217-218, October 18- 20, Changwon (2017).
  16. H.H. Sung, "The Fabrication of Glass-Ceramics Sintered from Mixed Uranium and Metal Oxide Waste and Their Characterization", Masters Thesis, University of Science and Technology, Korea, 2018.
  17. K.W. Kim, R.I. Foster, J. Kim, H.H. Sung, D. Yang, W.J. Shon, M.K. Oh, and K.Y. Lee, "Glass-ceramic composite wasteform to immobilize and stabilize a uraniumbearing waste generated from treatment of a spent uranium catalyst", J. Nucl. Mater., 516, 238-246 (2019). https://doi.org/10.1016/j.jnucmat.2019.01.005
  18. J.M. Schaekers, "Preparation and thermogravimetric study of neutral uranyl phosphate $(UO_2)_3(PO_4)_2{\cdot}xH_2O$", J. Therm. Anal. Calorim., 3(4), 463-479 (1971). https://doi.org/10.1007/BF02188654
  19. J.M. Schaekers, "Thermogravimetric study of uranium phosphates", J. Therm. Anal., 6, 145-157 (1974). https://doi.org/10.1007/BF01911496
  20. J.M. Schaekers, "Thermogravimetric study of uranium phosphates", J. Therm. Anal., 6, 543-554 (1974). https://doi.org/10.1007/BF01911559
  21. M. Kamo and S. Ohashi, "Thermal decomposition of uranyl dihydrogen orthophosphate trihydrate", Bull. Chem. Soc. Jpn., 43(1), 84-89 (1970). https://doi.org/10.1246/bcsj.43.84
  22. H. Barten and E.H.P. Cordfunke, "A study on the thermal stability of uranyl phosphates $(UO_2)_3(PO_4)_2,\;(UO_2)_2P_2O_7$, and $UO_2(PO_3)_2$ using a static non-isothermal method", J. Inorg. Nucl. Chem., 42(1), 75-78 (1980). https://doi.org/10.1016/0022-1902(80)80046-7
  23. R.I. Foster, K.W. Kim, and K.Y. Lee, "Uranyl phosphate ($MUO_2PO_4,\;M\;=\;Na^+,\;K^+,\;NH_4^+$) precipitation for uranium sequestering: formation and physiochemical characterisation", J. Radioanal. Nucl. Chem., 324, 1265-1273 (2020). https://doi.org/10.1007/s10967-020-07154-0
  24. R.I. Foster, M.K. Oh, K.W. Kim, and K.Y. Lee, "Pilot scale treatment of a spent uranium catalyst formally used in the Sohio process: pilot plant verification of the SENSEI process", ACS Omega, 5, 10939-10947 (2020). https://doi.org/10.1021/acsomega.0c00723
  25. United States Department of Commerce, Standard Xray Diffraction Powder Patterns, National Bureau of Standards Circular 539, Vol. 10, pg. 10 (1960).