참고문헌
- Abouelregal, A.E. (2013), "Generalized thermoelastic infinite transversely isotropic body with a cylindrical cavity due to moving heat source and harmonically varying heat", Meccanica, 48, 1731-1745. https://doi.org/10.1007/s11012-013-9705-z.
- Alesemi, M. (2018), "Plane waves in magneto-thermoelastic anisotropic medium based on (L-S) theory under the effect of Coriolis and centrifugal forces", International Conference on Materials Engineering and Applications, 1-12.
- Bhatti, M.M., Elelamy, A.F., Sait, S.M. and Ellahi, R. (2020a), "Hydrodynamics interactions of metachronal waves on particulate-liquid motion through a ciliated annulus: Application of bio-engineering in blood clotting and endoscopy", Symmetry, 12(4), 532-547. https://doi.org/10.3390/sym12040532.
- Bhatti, M.M., Ellahi, R., Zeeshan, A., Marin, M. and Ijaz, N. (2019a), "Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties", Modern Phys. Lett. B, 35(35). https://doi.org/10.1142/S0217984919504396.
- Bhatti, M.M., Shahid, A., Abbas, T., Alamri, S.Z. and Ellahi, R. (2020b), "Study of activation energy on the movement of gyrotactic microorganism in a magnetized nanofluids past a porous plate", Process., 8(3), 328-348. https://doi.org/10.3390/pr8030328.
- Bhatti, M.M., Yousif, M.A., Mishra, S.R. and Shahid, A. (2019b), "Simultaneous influence of thermo-diffusion and diffusion-thermo on non-Newtonian hyperbolic tangent magnetised nanofluid with Hall current through a nonlinear stretching surface", Pramana, 93(6), 88. https://doi.org/10.1007/s12043-019-1850-z.
- Borejko, P. (1996), "Reflection and transmission coefficients for three dimensional plane waves in elastic media", Wave Motion, 24, 371-393. https://doi.org/10.1016/S0165-2125(96)00026-1.
- Chauthale, S. and Khobragade, N.W. (2017), "Thermoelastic response of a thick circular plate due to heat generation and its thermal stresses", Global J. Pure Appl. Math., 13, 7505-7527.
- Craciun, E.M. and Soos, E. (2006), "Antiplane states in an anisotropic elastic body containing an elliptical hole", Math. Mech. Solid., 11(5), 459-466. https://doi.org/10.1177/1081286506044138.
- Craciun, E.M., Carabineanu, A. and Peride, N. (2008), "Antiplane interface crack in a pre-stressed fiber-reinforced elastic composite", Comput. Mater. Sci., 43(1), 184-189. https://doi.org/10.1016/j.commatsci.2007.07.028.
- Deswal, S. and Kalkal, K.K. (2015), "Three-dimensional half-space problem within the framework of two-temperature thermo-viscoelasticity with three-phase-lag effects", Appl. Math. Model., 39, 7093-7112. https://doi.org/10.1016/j.apm.2015.02.045.
- Dhaliwal, R. and Singh, A. (1980), Dynamic Coupled Thermoelasticity, Hindustan Publication Corporation, New Delhi, India.
- Ezzat, M. and AI-Bary, A. (2017), "Fractional magneto-thermoelastic materials with phase lag Green-Naghdi theories", Steel Compos. Struct., 24(3), 297-307. https://doi.org/10.12989/scs.2017.24.3.297.
- Ezzat, M., El-Karamany, A. and El-Bary, A. (2015), "Thermo-viscoelastic materials with fractional relaxation operators", Appl. Math. Model., 39(23), 7499-7512. https://doi.org/10.1016/j.apm.2015.03.018.
- Ezzat, M., El-Karamany, A. and El-Bary, A. (2016), "Generalized thermoelasticity with memory-dependent derivatives involving two temperatures", Mech. Adv. Mater. Struct., 23(5), 545-553. https://doi.org/10.1080/15376494.2015.1007189.
- Ezzat, M.A., El-Karamany, A.S. and Ezzat, S.M. (2012), "Two-temperature theory in magneto-thermoelasticity with fractional order dual-phase-lag heat transfer", Nucl. Eng. Des., 252, 267-277. https://doi.org/10.1016/j.nucengdes.2012.06.012.
- Hassan, M., Marin, M., Ellahi, R. and Alamri, S. (2018), "Exploration of convective heat transfer and flow characteristics synthesis by Cu-Ag/water hybrid-nanofluids", Heat Transf. Res., 49(18), 1837-1848. doi:10.1615/HeatTransRes.2018025569.
- Kumar, R. and Chawla, V. (2011), "A study of plane wave propagation in anisotropic thteephase-lag model and two-phae-lag model", Int. Commun. Heat Mass Transf., 38, 1262-1268. https://doi.org/10.1016/j.icheatmasstransfer.2011.07.005.
- Kumar, R. and Gupta, R.R. (2012), "Plane waves reflection in micropolar transversely isotropic generalized thermoelastic half-space", Math. Sci., 6(6), 1-10. https://doi.org/10.1186/2251-7456-6-6.
- Kumar, R. and Gupta, V. (2015), "Dual-phase-lag model of wave propagation at the Interface between elastic and thermoelastic diffusion media", J. Eng. Phys. Thermophys., 88(1), 252-265. https://doi.org/10.1007/s10891-015-1188-4.
- Kumar, R. and Kansal, T. (2017), "Reflection and refraction of plane harmonic waves at an interface between elastic solid and magneto-thermoelastic diffusion solid with voids", Comput. Meth. Sci. Technol., 23(1), 43-56. https://doi.org/10.12921/cmst.2016.0000036
- Kumar, R., Kaushal, P. and Sharma, R. (2018), "Transversely isotropic Magneto-Visco thermoelastic medium with vacuum and without energy dissipation", J. Solid Mech., 10(2), 416-434.
- Kumar, R., Sharma, N. and Lata, P. (2016), "Effects of thermal and diffusion phase-lags in a plate with axisymmetric heat supply", Multidisc. Model. Mater. Struct., 12(2), 275-290. https://doi.org/10.1108/MMMS-08-2015-0042.
- Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions in transversely isotropic magnetothermoelastic medium with vacuum and with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Math. Model., 40(13-14), 6560-6575. https://doi.org/10.1016/j.apm.2016.01.061
- Kumar, R., Sharma, N. and Lata, P. (2017), "Effects of Hall current and two temperatures intransversely isotropic magnetothermoelastic with and without energy dissipation due to ramp-type heat", Mech. Adv. Mater. Struct., 24(8), 625-635. https://doi.org/10.1080/15376494.2016.1196769.
- Lata, P. and Kaur, I. (2018), "Effect of hall current in transversely isotropic magnetothermoelastic rotating medium with fractional order heat transfer due to normal force", Adv. Mater. Res., 7(3), 203-220. https://doi.org/10.12989/amr.2018.7.3.203.
- Lata, P. and Kaur, I. (2019a), "Transversely isotropic thick plate with two temperature and GN type-III in frequency domain", Coupl. Syst. Mech., 8(1), 55-70. https://doi.org/10.12989/csm.2019.8.1.055.
- Lata, P. and Kaur, I. (2019b), "Study of transversely isotropic thick circular plate due to ring load with two temperature & Green Nagdhi theory of Type-I, II and III", International Conference on Sustainable Computing in Science, Technology & Management (SUSCOM-2019), Amity University Rajasthan, Jaipur, India.
- Lata, P. and Kaur, I. (2019c), "Thermomechanical interactions in transversely isotropic thick circular plate with axisymmetric heat supply", Struct. Eng. Mech., 69(6), 607-614. https://doi.org/10.12989/sem.2019.69.6.607.
- Lata, P. and Kaur, I. (2019d), "Transversely isotropic magneto thermoelastic solid with two temperature and without energy dissipation in generalized thermoelasticity due to inclined load", SN Appl. Sci., 1. 426. https://doi.org/10.1007/s42452-019-0438-z.
- Lata, P. and Kaur, I. (2019e), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., 70(2), 245-255. https://doi.org/10.12989/sem.2019.70.2.245.
- Lee, G.H., Chung, H.J. and Choi, C.K. (2002), "Adaptive crack propagation analysis with the element-free Galerkin method", Int. J. Numer. Meth. Eng., 56(3), 331-350. https://doi.org/10.1002/nme.564.
- Maitya, N., Barikb, S. and Chaudhuri, P. (2017), "Propagation of plane waves in a rotating magneto-thermoelastic fiber-reinforced medium under G-N theory", Appl. Comput. Mech., 11, 47-58. https://doi.org/10.24132/acm.2017.328.
- Marin, M. (1996), "Generalized solutions in elasticity of micropolar bodies with voids", Revista de la Academia Canaria de Ciencias, VIII, 101-106.
- Marin, M. (2009), "On the minimum principle for dipolar materials with stretch", Nonlin. Anal. Real World Appl., 10(3), 1572-1578. https://doi.org/10.1016/j.nonrwa.2008.02.001.
- Marin, M. (2010), "A partition of energy in thermoelasticity of microstretch bodies", Nonlin. Anal. Real World 11(4), 2436-2447. https://doi.org/10.1016/j.nonrwa.2009.07.014.
- Marin, M. and Nicaise, S. (2016), "Existence and stability results for thermoelastic dipolar bodies with double porosity", Continuum Mech. Thermodyn., 28(6), 1645-1657. https://doi.org/10.1007/s00161-016-0503-4.
- Marin, M., Craciun, E. and Pop, N. (2016), "Considerations on mixed initial-boundary value problems for micropolar porous bodies", Dyn. Syst. Appl., 25(1-2), 175-196.
- Marin, M., Ellahi, R. and Chirila, A. (2017), "On solutions of Saint-Venant's problem for elastic dipolar bodies with voids", Carpath. J. Math., 33(2), 219-232. https://doi.org/10.37193/CJM.2017.02.09
- Othman, M.I. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory", Result. Phys., 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012.
- Othman, M.I. and Song, Y.Q. (2006), "The effect of rotation on the reflection of magneto-thermoelastic waves under thermoelasticity without energy dissipation", Acta Mech, 184, 89-204. https://doi.org/10.1007/s00707-006-0337-4.
- Othman, M.I. and Song, Y.Q. (2008), "Reflection of magneto-thermoelastic waves from a rotating elastic half-space", Int. J. Eng. Sci., 46, 459-474. https://doi.org/10.1016/j.ijengsci.2007.12.004.
- Othman, M.I., Abo-Dahab, S.M. and S.Alsebaey, O.N. (2017), "Reflection of plane waves from a rotating Magneto-Thermoelastic medium with two-temperature and initial stress under three theories", Mech. Mech. Eng., 21(2), 217-232.
- Sharma, J.N. and Kaur, R. (2015), "Modeling and analysis of forced vibrations in transversely isotropic thermoelastic thin beams", Meccanica, 50, 189-205. https://doi.org/10.1007/s11012-014-0063-2.
- Sinha, S. and Elsibai, K. (1997), "Reflection and refraction of thermoelastic waves at an interface of two semi-infinite media with two relaxation times", J. Therm. Stress., 20, 129-145. https://doi.org/10.1080/01495739708956095.
- Slaughter, W.S. (2002), The Linearised Theory of Elasticity, Birkhausar.
- Ting, T.C. (2004), "Surface waves in a rotating anisotropic elastic half-space", Wave Motion, 40, 329-346. https://doi.org/10.1016/j.wavemoti.2003.10.005
- Youssef, H.M. (2013), "State-space approach to two-temperature generalized thermoelasticity without energy dissipation of medium subjected to moving heat source", Appl. Math. Mech., Engl. Edition, 34(1), 63-74. https://doi.org/10.1007/s10483-013-1653-7.
- Youssef, H.M. (2016), "Theory of generalized thermoelasticity with fractional order strain", J. Vib. Control, 22(18), 3840-3857. https://doi.org/10.1177/1077546314566837.
- Zenkour, A. (2018), "Refined microtemperatures multi-phase-lags theory for plane wave propagation in thermoelastic medium", Result. Phys., 11, 929-937. https://doi.org/10.1016/j.rinp.2018.10.030.
- Zhang, L., Arain, M.B., Bhatti, M.M., Zeeshan, A. and Hal-Sulami, H. (2020), "Effects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids", Appl. Math. Mech., 41(4), 637-654. https://doi.org/10.1007/s10483-020-2599-7.
피인용 문헌
- Reflection of plane harmonic wave in rotating media with fractional order heat transfer vol.9, pp.4, 2020, https://doi.org/10.12989/amr.2020.9.4.289