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A NEW COMBINATION THEOREM FOR RELATIVELY

HYPERBOLIC GROUPS

Jan Kim and Donghi Lee∗

Abstract. We prove a new combination theorem for relatively hyperbolic

groups by analyzing diagrams over HNN-extensions of relatively hyper-

bolic groups.

1. Introduction

We recall Osin’s definition [3] of relatively hyperbolic groups among many
equivalent definitions of relatively hyperbolic groups. Let G be a group, H =
{Hλ}λ∈Λ a collection of subgroups of G, X a subset of G. Suppose that X is a
relative generating set for (G,H), namely, G is generated by the set

(⋃
λ∈ΛHλ

)
∪

X (for convenience, we assume that X = X−1). Then G can be regarded as
the quotient group of the free product

F = (∗λ∈ΛH̃λ) ∗ F (X),

where the groups H̃λ are isomorphic copies of Hλ, and F (X) is the free group
generated by X. Let H be the disjoint union

H =
⊔
λ∈Λ

(H̃λ \ {1}). (1)

For every λ ∈ Λ, we denote by Sλ the set of all words over the alphabet H̃λ \
{1} that represent the identity in F . Then we may describe G as a relative
presentation

〈X,H |Sλ, λ ∈ Λ,R〉 (2)

with respect to the collection of subgroups {Hλ}λ∈Λ, where R ⊆ F . For brevity,
we often use the following shorthand for presentation (2):

〈X,H |R〉. (3)
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If both the sets R and X are finite, relative presentation (2) or (3) is said to be
finite and the group G is said to be finitely presented relative to the collection
of subgroups H.

For every word w in the alphabet X ∪ H representing the identity in the
group G, there exists an expression

w =F

k∏
i=1

f−1
i Rifi (4)

with the equality in the group F , where Ri ∈ R and fi ∈ F for i = 1, . . . , k.
The smallest possible number k in a presentation of the form (4) is called the
relative area of w and is denoted by Arearel(w).

Definition 1. A group G is said to be hyperbolic relative to a collection of
subgroups H if G admits a relatively finite presentation (2) with respect to H
satisfying a linear relative isoperimetric inequality. That is, there is a constant
C > 0 such that for any cyclically reduced word w in the alphabet X ∪ H
representing the identity in G, we have

Arearel(w) ≤ C|w|X∪H,

where the symbol |w|X∪H means the word length of w over X∪H. The constant
C is called an isoperimetric constant of relative presentation (2).

Let G be a group that is hyperbolic relative to a collection of subgroups
H = {Hλ}λ∈Λ. Suppose that there exists a monomorphism ι : Hµ → Hν for
some µ, ν ∈ Λ. Osin [4] proved that if µ 6= ν and Hµ is finitely generated, then
the HNN-extension

G∗ = 〈G, t | t−1ht = ι(h), h ∈ Hµ〉

is hyperbolic relative to H \ {Hµ}. Our new combination theorem covers the
case when µ = ν, and is stated as follows. (cf. For finitely generated groups, a
similar result was obtained by Dahmani [1].)

Theorem 1.1. Suppose that a group G is hyperbolic relative to a collection of
subgroups H = {Hλ}λ∈Λ. Assume in addition that there exists a monomorphism
ι : Kµ → Hµ for some µ ∈ Λ, where Kµ is a subgroup of Hµ and it need not be
finitely generated. Then the HNN-extension

G∗ = 〈G, t | t−1kt = ι(k), k ∈ Kµ〉 (5)

is hyperbolic relative to the collection H\{Hµ}∪{H∗µ}, where H∗µ = 〈Hµ, t〉 ≤ G∗.
In particular, if G = 〈X,H |R〉 is a relative presentation of G with respect to

the collection of subgroups H, then G∗ = 〈X,H \ {Hµ} ∪ {H∗µ} |R〉, and these
two relative presentations have the same isoperimetric constant.

As an immediate corollary, we obtain
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Corollary 1.2. Suppose that a group G = 〈X,Hλ, λ ∈ Λ |R〉 is hyperbolic
relative to {Hλ}λ∈Λ. Then the group G• defined by a relative presentation
G• = 〈X,H•λ, λ ∈ Λ |R〉 is hyperbolic relative to {H•λ}λ∈Λ, where H•λ

∼= Hλ×Aλ
for some (finitely or infinitely generated) free abelian group Aλ for each λ ∈ Λ.

2. Proof of Theorem 1.1

A word in an alphabet is called cyclically reduced if all its cyclic permutations
are reduced. A cyclic word is defined to be the set of all cyclic permutations
of a cyclically reduced word. By (w), we denote the cyclic word associated
with a cyclically reduced word w. Also, by (u) ≡ (w), we mean the visual
equality of two cyclic words (u) and (w). For other terminology and notation
used throughout this section, we refer the reader to [4, Sections 2 and 3].

Let us fix a finite relative presentation

G = 〈X,Hλ, λ ∈ Λ |R〉 (6)

of G with respect to {Hλ}λ∈Λ. Clearly HNN-extension (5) has a finite relative
presentation

G∗ = 〈X,H∗µ, Hλ, λ ∈ Λ \ {µ} |R〉 (7)

in view of shorthand (3).
For H defined as in (1), let

H∗ = H \ (H̃µ \ {1}) t (H̃∗µ \ {1}),

where H̃∗µ is an isomorphic copy of H∗µ. Also let w be a cyclically reduced word
in the alphabet X ∪ H∗ such that w represents the identity in G∗. We use the
symbol ‖w‖ to mean the word length of w over X ∪ H∗. Not only for w but
also for any element in G∗, the symbol ‖ ·‖ will be used to mean its word length
over X ∪ H∗. Let C be an isoperimetric constant of relative presentation (6).
Then we will show that

Arearel(w) ≤ C‖w‖. (8)

By van Kampen’s Lemma, there is a reduced van Kampen diagram ∆ over
presentation (7) such that a boundary label of ∆ is visually equal to w (cf. [2]).
In particular, we can take ∆ so that ∆ has the least number of R-cells among all
van Kampen diagrams over (7) with a boundary label w. If Arearel(∆) denotes
the number of R-cells in ∆, this implies that Arearel(w) = Arearel(∆). So in
order to show (8), it suffices to show

Arearel(∆) ≤ C‖w‖. (9)

A cell in a diagram over presentation (7) is called a t-cell if it corresponds
to a relation of the form t−1kt = ι(k), where k ∈ Kµ. They are shown on
Figure 1(a). A configuration of t-cells, as shown on Figure 1(b), we call a
t-annulus.

Claim. We may assume that ∆ does not contain a t-annulus.
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Figure 1.

Proof of Claim. Suppose that ∆ contains a t-annulus. Take an innermost t-
annulus T in ∆, meaning that there is not another t-annulus inside T . Then
the label of the internal contour p of T represents the identity in Hµ. Since ι is
a monomorphism, the label of the external contour q of T also represents the
identity in Hµ. This implies that the circular subdiagram, say D, bounded by
the contour p consists of only Hµ-cells and that we may replace D t T with
D′ consisting of only Hµ-cells with the contour q. By repeating this process to
remove all t-annuli from ∆, we obtain a new van Kampen diagram ∆′ such that
(Lab(∂∆′)) ≡ (Lab(∂∆)) and Arearel(∆′) = Arearel(∆) (see Figure 2), where
Lab is a labeling function. Hence we may rename ∆′ as ∆. �

Figure 2. Removing all t-annuli from ∆

By Claim, t-cells can only form t-strips, and these t-strips must end on the
boundary of ∆. To show inequality (9), we proceed by induction on the number
of t-strips in ∆. If there is no t-strip in ∆, then ∆ is a van Kampen diagram
over (6), and hence (9) holds.

Now assume that ∆ contains at least one t-strip. Take any t-strip, say T ,
in ∆. Let ∆1 and ∆2 be the subdiagrams lying in the left and right of T ,
respectively, so that ∆ = ∆1 t T t∆2 (see Figure 3).

Clearly t-cells belong to H∗µ-cells, so they are not counted in Arearel(∆).
Hence

Arearel(∆) = Arearel(∆1) +Arearel(∆2). (10)

Moreover, for each i = 1, 2, note that ∆i is a van Kampen diagram over (7)
which has the smallest relative area among all van Kampen diagrams over (7)
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Figure 3. ∆ = ∆1 t T t∆2

with the same boundary label as ∆i. Then by the induction hypothesis, we
have

Arearel(∆i) ≤ C‖Lab(∂∆i)‖ (11)

for all i = 1, 2.
Let (Lab(∂∆i)) ≡ (wiki), where wi is a reduced word over X∪H∗ and ki is a

reduced word over H̃∗µ for all i = 1, 2, so that (w) ≡ (Lab(∂∆)) ≡ (w1t
±1w2t

∓1)
(see Figure 4).

Figure 4. (w) ≡ (Lab(∂∆)) ≡ (w1t
±1w2t

∓1)

Put wi ≡ wibw̄iwie, where ‖wib‖ = ‖wie‖ = 1 for all i = 1, 2. Note that for
each i = 1, 2,
‖Lab(∂∆i)‖ = ‖wi‖ − 1 if both wib and wie belong to H̃∗µ;

‖Lab(∂∆i)‖ = ‖wi‖ if either wib or wie but not both belongs to H̃∗µ;

‖Lab(∂∆i)‖ = ‖wi‖+ 1 if neither wib nor wie belongs to H̃∗µ.
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Let Y = {w1b, w1e, w2b, w2e} ∩ H̃∗µ. It then follows that

‖Lab(∂∆1)‖+ ‖Lab(∂∆2)‖ = ‖w1‖+ ‖w2‖ − 2 if |Y | = 4;

‖Lab(∂∆1)‖+ ‖Lab(∂∆2)‖ = ‖w1‖+ ‖w2‖ − 1 if |Y | = 3;

‖Lab(∂∆1)‖+ ‖Lab(∂∆2)‖ = ‖w1‖+ ‖w2‖ if |Y | = 2;

‖Lab(∂∆1)‖+ ‖Lab(∂∆2)‖ = ‖w1‖+ ‖w2‖+ 1 if |Y | = 1;

‖Lab(∂∆1)‖+ ‖Lab(∂∆2)‖ = ‖w1‖+ ‖w2‖+ 2 if |Y | = 0.

In view of (w) ≡ (Lab(∂∆)) ≡ (w1t
±1w2t

∓1), note also that

‖w‖ = ‖w1‖+ ‖w2‖ − 2 if |Y | = 4;

‖w‖ = ‖w1‖+ ‖w2‖ − 1 if |Y | = 3;

‖w‖ = ‖w1‖+ ‖w2‖ if |Y | = 2;

‖w‖ = ‖w1‖+ ‖w2‖+ 1 if |Y | = 1;

‖w‖ = ‖w1‖+ ‖w2‖+ 2 if |Y | = 0.

Therefore, in any of five cases, we have

‖Lab(∂∆1)‖+ ‖Lab(∂∆2)‖ = ‖w‖.
This together with (10) and (11) finally yields (9), which completes the proof
of Theorem 1.1.
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