
East Asian Math. J.

Vol. 36 (2020), No. 5, pp. 537–545

http://dx.doi.org/10.7858/eamj.2020.035

POLYNOMIAL INVARIANTS FOR VIRTUAL KNOTS VIA

VIRTUALIZATION MOVES

Young Ho Im and Sera Kim∗

Abstract. We investigate some polynomial invariants for virtual knots

via virtualization moves. We define two types of polynomials WG(t) and

S2
G(t) from the definition of the index polynomial for virtual knots. And

we show that they are invariants for virtual knots on the quotient ring

Z[t±1]/I where I is an ideal generated by t2 − 1.

1. Introduction

In [5], Kauffman introduced virtual knot theory as a generalization of classical
knot theory in the sense that if two classical link diagrams are equivalent as
virtual links, then they are equivalent as classical links. A virtual link diagram is
a link diagram in R2 possibly with some encircled crossings without over/under
information, called virtual crossings. A virtual link is an equivalence class of
such link diagrams by the generalized Reidemeister moves, which consist of
(classical) Reidemeister moves of type R1, R2 and R3 and virtual Reidemeister
moves of type V R1, V R2, V R3 and the semivirtual move V R4 as shown in Figure
1.
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Figure 1. Generalized Reidemeister moves
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And we consider the following oriented Reidemeister moves instead of the
classical Reidemeister moves to prove the main result. In [6], Polyak proved
all oriented Reidemeister moves are generated by the following four oriented
Reidemeister moves Ia, Ib, IIa, IIIa shown in Figure 2.

Ia Ib IIa IIIa

Figure 2. Oriented Reidemeister moves for virtual knot diagrams

Let us investigate the corresponding Reidemeister moves Ia, Ib, IIa, IIIa and
IIIa′ in Gauss diagrams shown in Figure 3. Using these moves we can find a
proper ideal to define polynomial invariants for virtual knots.
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Figure 3. Reidemeister moves Ia, Ib, IIa, IIIa and IIIa′ for
Gauss diagrams

In [5], Kauffman showed the bracket polynomial is preserved under the vir-
tualization moves which are not invariants for virtual knots. For example, the
bracket polynomial could not detected the difference between the virtual trefoil
knot K and the other virtual knot K ′ via a virtualization move at a real crossing
of K. But it is known that K and K ′ are not equivalent by the index poly-
nomial which is an invariant for virtual knots. In [4], the index polynomial for
checkerboard colorable flat virtual knots are elements in Z[x2] and we showed
the Miyazawa knot and its flat virtual knot diagram are not checkerboard col-
orable by applying a virtualization move at a flat crossing of the flat virtual
knot diagram. For the next step, we investigate the virtualization moves and
polynomial invariants for virtual knots.
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This paper is organized as follows. Section 2 reviews some basic definitions
and properties for virtual knots. We introduce the definition of the index poly-
nomial and two types of virtualization moves. In Section 3, we consider polyno-
mials from two virtualization moves and prove these polynomials are invariants
on the quotient ring Z[t±1]/I where I is an ideal generated by t2 − 1.

2. Preliminaries

We begin this section with some definitions and results which are needed
throughout this paper.

Let D be a virtual knot diagram with m real crossings. A Gauss diagram
G is a counter-clockwise oriented circle S1 with m chords joining each pair of
points corresponding to each real crossing of D. Each classical knot diagram
has a corresponding Gauss diagram, but the converse is not true. We have the
following correspondence between virtual knot diagrams and Gauss diagrams.

Theorem 2.1. [2] A Gauss diagram uniquely defines a virtual knot isotopy
class.

Let G be a Gauss diagram, c be a chord of G and D be a corresponding virtual
knot diagram. Since the preimages of the overcrossing and the undercrossing of
D are connected by a chord directed from the preimage of the overcrossing to the
preimage of the undercrossing in a circle with an counter-clockwise orientation,
we assign a sign to each chord according to the sign of the corresponding real
crossing of D. For each chord c of G, we assign the signs of endpoints of the
chord c as shown in Figure 4.

If R(c) is the collection of endpoints except those of c on the right side of the
chord c, then the intersection index of c denoted by i(c) is the sum of signs of
endpoints in R(c).

c

-sign(c)

sign(c)

The right side 
of the chord c

Figure 4. The sign of endpoints of c

Definition 1. Let D be a virtual knot diagram and G be a Gauss diagram of
D. We define the index polynomial for G as fG(t) =

∑
c∈C(G) sign(c)(ti(c) − 1)

where C(G) is the set of chords of G.
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It is known that the index polynomial fG(t) is an invariant for Gauss dia-
grams. In fact, the polynomial fG(t) is same as the index polynomial fD(t) for
D.

From now on, we introduce two types of virtualization moves at a real crossing
of a virtual knot diagram in [1]. Let D be a virtual knot diagram and c be a real
crossing of D. Then there are two virtualization moves at c as shown in Figure
5. For convenience, the corresponding chord of c in a Gauss diagram G of D
is denoted by the same letter c. The Gauss diagram G∗c is obtained from G by
the way virtualization move at a chord c of G in Figure 5. Similarly, the Gauss
diagram obtained by the sign virtualization move at a chord c as the following
figure is denoted by G◦c .
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Figure 5. Virtualization moves

3. Two types of polynomials via virtualization moves

For each chord c of a Gauss diagram G, we define polynomials with Gauss
diagrams G∗c and G◦c and consider invariants for virtual knot diagrams.

Definition 2. Let G be a Gauss diagram. We define a polynomial WG(t) as

WG(t) =
∑

c∈C(G)

sign(c)fG∗c (t)

where C(G) is the set of chords of G and fG∗c (t) is the index polynomial for G∗c .
And we define a polynomial SG(t) as

SG(t) =
∑

c∈C(G)

∑
d∈I(c)

sign(d)(tic(d) − 1)

where C(G) is the set of chords of G, I(c) is the set of chords which are in-
tersected with c in G and c itself, and ic(d) is the intersection index of d in
G◦c .

In [3], let G be a Gauss diagram and C(G) be the set of all chords of G.
Define a subset of C(G) for each non-negative integer n as

Cn(G) = {c ∈ C(G)|ind(c) = kn for some integer k}.
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Definition 3. [3] For each c in Cn(G) and non-negative integer n, we define
the integer dn(c) as the sum of signs of endpoints in R(c) whose chords belong to
Cn(G), and we define the n-th polynomial forG as ZnG(t) =

∑
c∈Cn(G) sign(c)(tdn(c)−

1).

Similarly, we define the polynomials Wn
G(t) and SnG(t) for a non-negative

integer n if we put the set Cn(G) and In(c) instead of C(G) and I(c) for each
chord c in Cn(G). Then we get the following lemmas and the main theorem.

Lemma 3.1. Let G be a Gauss diagram and H be a Gauss diagram obtained
from G by a single move IIa as Figure 3. Then the difference between WG(t) and
WH(t) has the form (t2−1)g(t) for some laurent polynomial g(t). Similarly, the
difference between S2

G(t) and S2
H(t) has the form (t2 − 1)h(t) for some laurent

polynomial h(t).

Proof. Suppose that the number of chords of H is greater than the one of G,
and the new chords of H by the IIa move are called a and b as Figure 3. And
the chords intersected with chords a and b in H are denoted by c′.

Then the terms related to a and b chords in WH(t) are

sign(a)fH∗a (t) = +{p(t)+(t−i(a)−1)−(ti(b)+2−1)+
∑

c′∈I(a)

sign(c′)(ti(c
′)±2−1)}

sign(b)fH∗b (t) = −{p(t)+(ti(a)+2−1)−(t−i(b)−1)+
∑

c′∈I(b)

sign(c′)(ti(c
′)∓2−1)}

where p(t) is the sum of terms related to chords of H which are not inter-
sected with the chord a and b. Then sign(a)fH∗a (t) + sign(b)fH∗b (t) = (t2 −
1){−2t−α(tα+tα−1+ · · ·+1)(tα−tα−1+ · · ·+1)+

∑
c′∈I sign(c′)ti(c

′)−2(t2+1)}
where α = i(a) = i(b) and I = I(a) = I(b). Since the other terms in WH(t) are
same as the corresponding terms in WG(t), WH(t) −WG(t) = (t2 − 1)g(t) for
some laurent polynomial g(t).

Similarly, the terms related to a and b chords in SH(t) are∑
d∈I(a)

sign(d)(tia(d)−1) = −(ti(a)−1)−(ti(b)+2−1)+
∑

c′∈I(a)

sign(c′)(ti(c
′)±2−1)

∑
d∈I(b)

sign(d)(tib(d)−1) = +(ti(a)+2−1)+(ti(b)−1)+
∑

c′∈I(b)

sign(c′)(ti(c
′)∓2−1).

The sum of the above two terms is
∑
c′∈I sign(c′)(ti(c

′)±2+ti(c
′)∓2−2) where

I = I(a) = I(b). It could be same as
∑
c′∈I sign(c′)(t2 − 1)(ti(c

′) + ti(c
′)−2 +

2ti(c
′)−4 + · · ·+ 2) if i(c′) are even for all chord c′ in I. Since the other terms in

S2
H(t) are same as the corresponding terms in S2

G(t), S2
H(t)− S2

G(t) is equal to
(t2 − 1)h(t) for some laurent polynomial h(t).

�
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Lemma 3.2. Let G be a Gauss diagram and H be a Gauss diagram obtained
from G by a single move IIIa as Figure 3. Then the difference between WG(t)
and WH(t) has the form (t2−1)g(t) for some laurent polynomial g(t). Similarly,
the difference between S2

G(t) and S2
H(t) has the form (t2−1)h(t) for some laurent

polynomial h(t).

Proof. The chords of G related to the IIIa move are called a, b, and c and the
corresponding chords of H are called a′, b′ and c′ as Figure 3.

Then the terms related to a, b, and c chords in WG(t) are

sign(a)fG∗a(t) = −{p(t)− (t−i(a) − 1) + (ti(b)+2 − 1) + (ti(c)−2 − 1)+∑
c1∈I(b)∩I(c)

sign(c1)(ti(c1) − 1) +
∑

c2∈I(a)∩I(c)

sign(c2)(ti(c2)±2 − 1)+

∑
c3∈I(a)∩I(b)

sign(c3)(ti(c3)±2 − 1)},

sign(b)fG∗b (t) = +{p(t)− (ti(a)+2 − 1) + (t−i(b) − 1) + (ti(c)+2 − 1)+∑
c1∈I(b)∩I(c)

sign(c1)(ti(c1)±2 − 1) +
∑

c2∈I(a)∩I(c)

sign(c2)(ti(c2)±2 − 1)+

∑
c3∈I(a)∩I(b)

sign(c3)(ti(c3) − 1)}, and

sign(c)fG∗c (t) = +{p(t)− (ti(a)−2 − 1) + (ti(b)−2 − 1) + (t−i(c) − 1)+∑
c1∈I(b)∩I(c)

sign(c1)(ti(c1)±2 − 1) +
∑

c2∈I(a)∩I(c)

sign(c2)(ti(c2) − 1)

+
∑

c3∈I(a)∩I(b)

sign(c3)(ti(c3)±2 − 1)}

where p(t) is the sum of terms related to chords of G which are not intersected
with the chord a, b and c.

Then the terms related to a′, b′, and c′ chords in WH(t) are

sign(a′)fH∗
a′

(t) = −{p(t)− (t−i(a) − 1) + (ti(b) − 1) + (ti(c) − 1)+∑
c′1∈I(b′)∩I(c′)

sign(c1)(ti(c1) − 1) +
∑

c′2∈I(a′)∩I(c′)

sign(c2)(ti(c2)±2 − 1)

+
∑

c′3∈I(a′)∩I(b′)

sign(c3)(ti(c3)±2 − 1)},

sign(b′)fH∗
b′

(t) = +{p(t)− (ti(a) − 1) + (t−i(b) − 1) + (ti(c) − 1)+∑
c′1∈I(b′)∩I(c′)

sign(c1)(ti(c1)±2 − 1) +
∑

c′2∈I(a′)∩I(c′)

sign(c2)(ti(c2)±2 − 1)+
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c′3∈I(a′)∩I(b′)

sign(c3)(ti(c3) − 1)}, and

sign(c′)fH∗
c′

(t) = +{p(t)− (ti(a) − 1) + (ti(b) − 1) + (t−i(c) − 1)+∑
c′1∈I(b′)∩I(c′)

sign(c1)(ti(c1)±2 − 1) +
∑

c′2∈I(a′)∩I(c′)

sign(c2)(ti(c2) − 1)+

∑
c′3∈I(a′)∩I(b′)

sign(c3)(ti(c3)±2 − 1)}

where p(t) is the sum of terms related to chords of H which are not intersected
with the chord a′, b′ and c′.

Since the other terms inWG(t) are same as the corresponding terms inWH(t),
WH(t)−WG(t) = ti(a)(t2−2+t−2)+ti(b)−2(t4−1)+ti(c)−2(t4−1) = (t2−1)g(t)
for some laurent polynomial g(t).

Similarly, the terms related to a, b and c in SG(t) are that∑
d∈I(a)

sign(d)(tia(d) − 1) = +(ti(a) − 1) + (ti(b)+2 − 1) + (ti(c)−2 − 1)

+
∑

c2∈I(a)∩I(c)

sign(c2)(ti(c2)±2 − 1) +
∑

c3∈I(a)∩I(b)

sign(c3)(ti(c3)±2 − 1),

∑
d∈I(b)

sign(d)(tib(d) − 1) = −(ti(a)+2 − 1)− (ti(b) − 1) + (ti(c)+2 − 1)

+
∑

c1∈I(b)∩I(c)

sign(c1)(ti(c1)±2 − 1) +
∑

c2∈I(a)∩I(c)

sign(c2)(ti(c2)±2 − 1), and

∑
d∈I(c)

sign(d)(tic(d) − 1) = −(ti(a)−2 − 1) + (ti(b)−2 − 1)− (ti(c) − 1)

+
∑

c1∈I(b)∩I(c)

sign(c1)(ti(c1)±2 − 1) +
∑

c3∈I(a)∩I(b)

sign(c3)(ti(c3)±2 − 1)}.

The terms related to a′, b′ and c′ in SH(t) are that∑
d∈I(a′)

sign(d)(tia′ (d) − 1) = +(ti(a) − 1)

+
∑

c2∈I(a)∩I(c)

sign(c2)(ti(c2)±2 − 1) +
∑

c3∈I(a)∩I(b)

sign(c3)(ti(c3)±2 − 1),

∑
d∈I(b′)

sign(d)(tib′ (d) − 1) = −(ti(b) − 1)

+
∑

c1∈I(b)∩I(c)

sign(c1)(ti(c1)±2 − 1) +
∑

c2∈I(a)∩I(c)

sign(c2)(ti(c2)±2 − 1), and



544 Y. H. IM AND S. KIM

∑
d∈I(c′)

sign(d)(tic′ (d) − 1) = −(ti(c) − 1)

+
∑

c1∈I(b)∩I(c)

sign(c1)(ti(c1)±2 − 1) +
∑

c3∈I(a)∩I(b)

sign(c3)(ti(c3)±2 − 1)}.

Since the other terms in SG(t) are same as the corresponding terms in SH(t),
SH(t)−SG(t) = +(ti(a)+2+ti(a)−2−2)−(ti(b)+2+ti(b)−2−2)−(ti(c)−2+ti(c)+2−
2). Thus, S2

H(t) − S2
G(t) is equal to (t2 − 1)h(t) for some laurent polynomial

h(t). �

In fact, we get the IIIa′ move from IIIa move by the changing the signs of
chords. Then we get the same conclusion for the IIIa′ move. And we prove the
following theorem by these lemmas.

Theorem 3.3. Let D be a virtual knot diagram and G be a Gauss diagram.
Then the polynomial WG(t) and S2

G(t) are invariants for virtual knot diagrams
on the quotient ring Z[t±1]/I where I is the ideal generated by t2 − 1.

For non-negative integer n, Wn
G(t) is also invariant for virtual knots on the

quotient ring Z[t±1]/I where I is the ideal generated by t2 − 1.

Remark 1. Let D be a virtual knot diagram and G be a Gauss diagram of D. If
D is obtained from a classical knot diagram by virtualization moves, WG(t) and
SG(t) could be zero. If D is checkerboard colorable, WG(t) and SG(t) could be
constant on the quotient ring Z[t±1]/I where I is the ideal generated by t2 − 1
since all real crossings of D have even intersection indices.

Example 3.4. Let D be a Miyazawa knot diagram and G be a Gauss diagram
of D in Figure 6.

a b c

d

D G

a

b
c

d

+
+

+

+
_

_
_

_

Figure 6. Miyazawa knot

WG(t) is equal to −2t−2 + 4t−1 − 2. Then WG(t) is equivalent to 4t − 4 in
P [t]/I where I is the ideal generated by t2 − 1. Therefore, D is non-trivial and
not checkerboard colorable.
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