References
- Ageena, N.A. (2010), "The use of local sawdust as an adsorbent for the removal of copper ion from wastewater using fixed-bed adsorption", Eng. Technol. J., 28(2), 224-235.
- Al-Kdasi, A., Idris, A., Saed, K. and Guan, C.T. (2004), "Treatment of textile wastewater by advanced oxidation processes-a review", Global nest Int. J., 6(3), 222-230.
- Alaton, I.A., Dogruel, S., Baykal, E. and Gerone, G. (2004), "Combined chemical and biological oxidation of penicillinformulation effluent", J. Environ. Manage., 73(2), 155-163. https://doi.org/10.1016/j.jenvman.2004.06.007.
- Alonso, J.M., Garcia, J., Calleja, A.J., Ribas, J. and Cardesin, J. (2005), "Analysis, design, and experimentation of a high-voltage power supply for ozone generation based on current-fed parallelresonant push-pull inverter", IEEE T. Indust. Appl., 41(5), 1364-1372. https://doi.org/10.1109/TIA.2005.853379.
- Alvares, A.B.C., Diaper, C. and Parsons, S.A. (2001), "Partial oxidation by ozone to remove recalcitrance from wastewaters-a review", Environ. Technol., 22(4), 409-427. https://doi.org/10.1080/09593332208618273.
- Amor, C., Marchao, L., Lucas, M.S. and Peres, J.A. (2019), "Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: A review", Water, 11(2), 205. https://doi.org/10.3390/w11020205.
- Amr, S.S.A., Aziz, H.A. and Bashir, M.J. (2014), "Application of response surface methodology (RSM) for optimization of semi-aerobic landfill leachate treatment using ozone", Appl. Water Sci., 4(3), 231- 239. https://doi.org/10.1007/s13201-014-0156-z.
- Amr, S.S.A., Aziz, H.A., Adlan, M.N. and Aziz, S.Q. (2013), "Effect of ozone and ozone/Fenton in the advanced oxidation process on biodegradable characteristics of semi-aerobic stabilized leachate", CLEAN-Soil, Air, Water, 41(2), 148-152. https://doi.org/10.1002/clen.201200005.
- Andreozzi, R., Caprio, V., Insola, A. and Marotta, R. (1999), "Advanced oxidation processes (AOP) for water purification and recovery", Catalysis Today, 53(1), 51-59. https://doi.org/10.1016/S0920-5861(99)00102-9.
- Ataei, A., Mirsaeed, M.G., Choi, J.K. and Lashkarboluki, R. (2015), "Application of ozone treatment in cooling water systems for energy and chemical conservation", Adv. Environ. Res., 4(3), 155-172. https://doi.org/10.12989/aer.2015.4.3.155.
-
Bauer, R., Waldner, G., Fallmann, H., Hager, S., Klare, M., Krutzler, T., Malato, S. and Maletzky, P. (1999), "The photo-fenton reaction and the
$TiO_2/UV$ process for waste water treatment-novel developments", Catalysis Today, 53(1), 131-144. https://doi.org/10.1016/S0920-5861(99)00108-X. - Behnajady, M. A., Modirshahla, N., Shokri, M. and Vahid, B. (2008), "Effect of operational parameters on degradation of Malachite Green by ultrasonic irradiation", Ultrason. Sonochem., 15(6), 1009-1014. https://doi.org/10.1016/j.ultsonch.2008.03.004.
- Beltran, F.J., Garcia-Araya, J.F. and A lvarez, P.M. (2000), "Sodium dodecylbenzenesulfonate removal from water and wastewater. 1. Kinetics of decomposition by ozonation", Industr. Eng. Chem. Res., 39(7), 2214-2220. https://doi.org/10.1021/ie990721a.
- Beltran, F.J., Garcia-Araya, J.F. and Giraldez, I. (2006), "Gallic acid water ozonation using activated carbon", Appl. Catal. B Environ., 63(3-4), 249-259. https://doi.org/10.1016/j.apcatb.2005.10.010.
- Beltran, F.J., Garcia-Araya, J.F. and Alvarez, P.M. (1999), "Integration of continuous biological and chemical (ozone) treatment of domestic wastewater: 2. Ozonation followed by biological oxidation", J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol., 74(9), 884-890. https://doi.org/10.1002/(SICI)1097-4660(199909)74:9%3C884::AID-JCTB120%3E3.0.CO;2-M.
- Bila, D.M., Montalvao, A.F., Silva, A.C. and Dezotti, M. (2005), "Ozonation of a landfill leachate: Evaluation of toxicity removal and biodegradability improvement", J. Hazard. Mater., 117(2-3), 235-242. https://doi.org/10.1016/j.jhazmat.2004.09.022.
- Brillas, E., Mur, E. and Casado, J. (1996), "Iron (II) catalysis of the mineralization of aniline using a carbon-PTFE O 2-Fed cathode", J. Electrochem. Soc., 143(3), L49. https://doi.org/10.1149/1.1836528.
-
Cacace, F. and Speranza, M. (1994), "Protonated ozone: Experimental detection of
$O_{3}H^{+}$ and evaluation of the proton affinity of ozone", Science, 265(5169), 208-209. https://doi.org/10.1126/science.265.5169.208. -
Cernigoj, U., Stangar, U.L. and Trebse, P. (2007), "Degradation of neonicotinoid insecticides by different advanced oxidation processes and studying the effect of ozone on
$TiO_2$ photocatalysis", Appl. Catal. B Environ., 75(3-4), 229-238. https://doi.org/10.1016/j.apcatb.2007.04.014. - Chang, E.E., Hsing, H.J., Chiang, P.C., Chen, M.Y. and Shyng, J.Y. (2008), "The chemical and biological characteristics of coke-oven wastewater by ozonation", J. Hazard. Mater., 156(1-3), 560-567. https://doi.org/10.1016/j.jhazmat.2007.12.106.
- Chang, J.S., Lawless, P.A. and Yamamoto, T. (1991), "Corona discharge processes", IEEE T. Plasma Sci., 19(6), 1152-1166. https://doi.org/10.1109/27.125038.
- Chedeville, O., Debacq, M. and Porte, C. (2009), "Removal of phenolic compounds present in olive mill wastewaters by ozonation", Desalination, 249(2), 865-869. https://doi.org/10.1016/j.desal.2009.04.014.
- Christensen, T.H., Kjeldsen, P., Bjerg, P.L., Jensen, D.L., Christensen, J.B., Baun, A. and Heron, G. (2001), "Biogeochemistry of landfill leachate plumes", Appl. Geochem., 16(7-8), 659-718. https://doi.org/10.1016/S0883-2927(00)00082-2.
- Chu, L.B., Xing, X.H., Yu, A.F., Sun, X.L. and Jurcik, B. (2008), "Enhanced treatment of practical textile wastewater by microbubble ozonation", Process Saf. Environ., 86(5), 389-393. https://doi.org/10.1016/j.psep.2008.02.005.
- Chu, W.H., Gao, N.Y., Yin, D.Q., Deng, Y. and Templeton, M.R. (2012), "Ozone-biological activated carbon integrated treatment for removal of precursors of halogenated nitrogenous disinfection byproducts", Chemosphere, 86(11), 1087-1091. https://doi.org/10.1016/j.chemosphere.2011.11.070.
- Cuerda-Correa, E.M., Alexandre-Franco, M.F. and Fernandez-Gonzalez, C. (2020), "Advanced oxidation processes for the removal of antibiotics from water. An overview", Water, 12(1), 102. https://doi.org/10.3390/w12010102.
- De Oliveira, T.F., Cagnon, B., Chedeville, O. and Fauduet, H. (2014), "Removal of a mix of endocrine disrupters from different natural matrices by ozone/activated carbon coupling process", Des. Water Treat., 52(22-24), 4395-4403. https://doi.org/10.1080/19443994.2013.803668.
- De Wilt, A., van Gijn, K., Verhoek, T., Vergnes, A., Hoek, M., Rijnaarts, H. and Langenhoff, A. (2018), "Enhanced pharmaceutical removal from water in a three step bio-ozone-bio process", Water Res., 138, 97-105. https://doi.org/10.1016/j.watres.2018.03.028.
- Deng, H. (2020), "A review on the application of ozonation to NF/RO concentrate for municipal wastewater reclamation", J. Hazard. Mater., 391, 122071. https://doi.org/10.1016/j.jhazmat.2020.122071.
- Deng, Y. and Zhao, R. (2015), "Advanced oxidation processes (AOPs) in wastewater treatment", Curr. Pollution Reports, 1(3), 167-176. https://doi.org/10.1007/s40726-015-0015-z.
- Destaillats, H., Colussi, A.J., Joseph, J.M. and Hoffmann, M.R. (2000), "Synergistic effects of sonolysis combined with ozonolysis for the oxidation of azobenzene and methyl orange", J. Phys. Chem. A, 104(39), 8930-8935. https://doi.org/10.1021/jp001415.
- Dietrich, M.J., Randall, T.L. and Canney, P.J. (1985), "Wet air oxidation of hazardous organics in wastewater", Environ. Progress, 4(3), 171-177. https://doi.org/10.1002/ep.670040312.
- El-Din, M.G. and Smith, D.W. (2002), "Ozonation of kraft pulp mill effluents: Process dynamics", J. Environ. Eng. Sci., 1(1), 45-57. https://doi.org/10.1139/s01-001.
- Ferguson, D.W., McGuire, M.J., Koch, B., Wolfe, R.L. and Aieta, E.M. (1990), "Comparing peroxone and ozone for controlling taste and odor compounds, disinfection by-products, and microorganisms", J. Amer. Water Works Assoc., 82(4), 181-191. https://doi.org/10.1002/j.1551- 8833.1990.tb06950.x.
- Fontanier, V., Albet, J., Baig, S. and Molinier, J. (2005), "Simulation of pulp mill wastewater recycling after tertiary treatment", Environ. Technol., 26(12), 1335-1344. https://doi.org/10.1080/09593332608618610.
- Fontanier, V., Farines, V., Albet, J., Baig, S. and Molinier, J. (2006), "Study of catalyzed ozonation for advanced treatment of pulp and paper mill effluents", Water Res., 40(2), 303-310. https://doi.org/10.1016/j.watres.2005.11.007.
- Gardoni, D., Vailati, A. and Canziani, R. (2012), "Decay of ozone in water: A review", Ozone Sci. Eng., 34(4), 233-242. https://doi.org/10.1080/01919512.2012.686354.
-
Garoma, T. and Gurol, M.D. (2004), "Degradation of tert-butyl alcohol in dilute aqueous solution by an
$O_3/UV$ process", Environ. Sci. Technol., 38(19), 5246-5252. https://doi.org/10.1021/es0353210. - Gautam, P., Kumar, S. and Lokhandwala, S. (2019), "Advanced oxidation processes for treatment of leachate from hazardous waste landfill: A critical review", J. Clean. Prod., 237, 117639. https://doi.org/10.1016/j.jclepro.2019.117639.
- Gerba, C.P., Betancourt, W.Q., Kitajima, M. and Rock, C.M. (2018), "Reducing uncertainty in estimating virus reduction by advanced water treatment processes", Water Res., 133, 282-288. https://doi.org/10.1016/j.watres.2018.01.044.
- Gogate, P.R. and Pandit, A.B. (2004), "A review of imperative technologies for wastewater treatment II: Hybrid methods", Adv. Environ. Res., 8(3-4), 553-597. https://doi.org/10.1016/S1093-0191(03)00031-5.
- Gottschalk, C., Libra, J.A. and Saupe, A. (2009), Ozonation of Water and Waste Water: A Practical Guide to Understanding Ozone and its Applications, John Wiley & Sons.
- Guo, W.Q., Ding, J., Cao, G.L., Ren, N.Q. and Cui, F.Y. (2011), "Treatability study of using low-frequency ultrasonic pretreatment to augment continuous biohydrogen production", Int. J. Hydrogen Energy, 36(21), 14180-14185. https://doi.org/10.1016/j.ijhydene.2011.04.057.
- Guo, W.Q., Yin, R.L., Zhou, X.J., Cao, H.O., Chang, J.S. and Ren, N.Q. (2016), "Ultrasonic-assisted ozone oxidation process for sulfamethoxazole removal: Impact factors and degradation process", Des. Water Treat., 57(44), 21015-21022. https://doi.org/10.1080/19443994.2015.1115373.
- Hamza, R.A., Iorhemen, O.T. and Tay, J.H. (2016), "Anaerobic-aerobic granular system for high-strength wastewater treatment in lagoons", Adv. Environ. Res., 5(3), 169-178. http://doi.org/10.12989/aer.2016.5.3.169.
- Hassanshahi, N. and Karimi-Jashni, A. (2018), "Comparison of photo-Fenton, O3/H2O2/UV and photocatalytic processes for the treatment of gray water", Ecotox. Environ. Safe., 161, 683-690. https://doi.org/10.1016/j.ecoenv.2018.06.039.
- He, S.B., Wang, B.Z., Wang, L. and Jiang, Y.F. (2003), "Treating both wastewater and excess sludge with an innovative process", J. Environ. Sci., 15(6), 749-756. https://doi.org/10.3321/j.issn:1001-0742.2003.06.005
- He, Z., Zhu, R., Xu, X., Song, S., Chen, J. and Xia, M. (2009), "Ozonation combined with sonolysis for degradation and detoxification of m-nitrotoluene in aqueous solution", Industr. Eng. Chem. Res., 48(12), 5578-5583. https://doi.org/10.1021/ie801566z.
- Hernandez, R., Zappi, M., Colucci, J. and Jones, R. (2002), "Comparing the performance of various advanced oxidation processes for treatment of acetone contaminated water", J. Hazard. Mater., 92(1), 33-50. https://doi.org/10.1016/S0304-3894(01)00371-5.
- Hernando, M.D., Petrovic, M., Radjenovic, J., Fernandez-Alba, A.R. and Barcelo, D. (2007), "Removal of pharmaceuticals by advanced treatment technologies", Comprehens. Anal. Chem., 50, 451-474. https://doi.org/10.1016/S0166-526X(07)50014-0.
- Hoigne, J. and Bader, H. (1983), "Rate constants of reactions of ozone with organic and inorganic compounds in water-I: Non-dissociating organic compounds", Water Res., 17(2), 173-183. https://doi.org/10.1016/0043-1354(83)90098-2.
- Hoigne, J.H.W.R.J., Bader, H., Haag, W.R. and Staehelin, J. (1985), "Rate constants of reactions of ozone with organic and inorganic compounds in water-III. Inorganic compounds and radicals", Water Res., 19(8), 993-1004. https://doi.org/10.1016/0043-1354(85)90368-9.
- Hu, Y., Feng, C. and Wu, H. (2017), "Ozonation in water treatment: The generation, basic properties of ozone and its practical application", Rev. Chem. Eng., 33(1), 49-89. https://doi.org/10.1515/revce-2016-0008.
- Huang, C. P., Dong, C. and Tang, Z. (1993), "Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment", Waste Manage., 13(5-7), 361-377. https://doi.org/10.1016/0956-053X(93)90070-D.
- Huang, W.J., Fang, G.C. and Wang, C.C. (2005), "The determination and fate of disinfection by-products from ozonation of polluted raw water", Sci. Total Environ., 345(1-3), 261-272. https://doi.org/10.1016/j.scitotenv.2004.10.019.
- Hunt, N.K. and Marinas, B.J. (1997), "Kinetics of Escherichia coli inactivation with ozone", Water Res., 31(6), 1355-1362. https://doi.org/10.1016/S0043-1354(96)00394-6.
- Ikehata, K. and El-Din, M.G. (2004), "Degradation of recalcitrant surfactants in wastewater by ozonation and advanced oxidation processes: A review", Ozone Sci. Eng., 26(4), 327-343. https://doi.org/10.1080/01919510490482160.
- Ikehata, K. and Li, Y. (2018), Ozone-Based Processes, in Advanced Oxidation Processes for Waste Water Treatment, Academic Press, 115-134.
- Ikehata, K., Jodeiri Naghashkar, N. and Gamal El-Din, M. (2006), "Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: A review", Ozone Sci. Eng., 28(6), 353-414. https://doi.org/10.1080/01919510600985937.
- Iorhemen, O.T., Alfa, M.I. and Onoja, S.B. (2016), "The review of municipal solid waste management in Nigeria: The current trends", Adv. Environ. Res., 5(4), 237-249. http://doi.org/10.12989/aer.2016.5.4.237.
- Jiang, X.Y., Zeng, G.M., Huang, D.L., Chen, Y., Liu, F., Huang, G.H. and Liu, H.L. (2006), "Remediation of pentachlorophenol-contaminated soil by composting with immobilized Phanerochaetechrysosporium", World J. Microbiol. Biotechnol., 22(9), 909-913. https://doi.org/10.1007/s11274-006-9134-4.
- Kasprzyk-Hordern, B., Ziolek, M. and Nawrocki, J. (2003), "Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment", Appl.Catal. B Environ., 46(4), 639-669. https://doi.org/10.1016/S0926-3373(03)00326-6.
- Khadre, M.A., Yousef, A.E. and Kim, J.G. (2001), "Microbiological aspects of ozone applications in food: A review", J. Food Sci., 66(9), 1242-1252. https://doi.org/10.1111/j.1365-2621.2001.tb15196.x.
- Kumari, M. and Saroha, A.K. (2018), "Performance of various catalysts on treatment of refractory pollutants in industrial wastewater by catalytic wet air oxidation: A review", J. Environ. Manage., 228, 169-188. https://doi.org/10.1016/j.jenvman.2018.09.003.
- Kurt, A., Mert, B.K., O zengin, N., Sivrioglu, O. and Yonar, T. (2017), Treatment of Antibiotics in Wastewater Using Advanced Oxidation Processes (AOPs), Physico-Chemical Wastewater Treatment and Resource Recovery, InTech, Rijeka, Croatia.
- Langlais, B., Reckhow, D.A. and Brink, D.R. (1991), Ozone in Water Treatment: Application and Engineering, CRC Press.
-
Larcher, S., Delbes, G., Robaire, B. and Yargeau, V. (2012), "Degradation of
$17{\alpha}$ -ethinylestradiol by ozonation- Identification of the by-products and assessment of their estrogenicity and toxicity", Environ. Int., 39(1), 66-72. https://doi.org/10.1016/j.envint.2011.09.008. - LeChevallier, M.W., Becker, W.C., Schorr, P. and Lee, R.G. (1992), "Evaluating the performance of biologically active rapid filters", J. Amer. Water Works Assoc., 84(4), 136-146. https://doi.org/10.1002/j.1551-8833.1992.tb07339.x.
- Lenntech (2016), Water treatment solution, Ozone decomposition, Technical University of Delft, The Netherlands. http://www.lenntech.com/library/ozone/decomposition/ozone-decomposition.htm.
- Levanov, A.V., Antipenko, E.E. and Lunin, V.V. (2012), "Primary stage of the reaction between ozone and chloride ions in aqueous solution: Oxidation of chloride ions with ozone through the mechanism of oxygen atom transfer", Russian J. Phys. Chem. A, 86(3), 519-522. https://doi.org/10.1134/S0036024412030193.
- Levanov, A.V., Isaykina, O.Y., Amirova, N.K., Antipenko, E.E. and Lunin, V.V. (2015), "Photochemical oxidation of chloride ion by ozone in acid aqueous solution", Environ. Sci. Pollut. Res., 22(21), 16554-16569. https://doi.org/10.1007/s11356-015-4832-9.
- Li, J., Wang, S., Li, Y., Jiang, Z., Xu, T. and Zhang, Y. (2020), "Supercritical water oxidation and process enhancement of nitrogen-containing organics and ammonia", Water Res., 116222. https://doi.org/10.1016/j.watres.2020.116222.
- Li, J., Yang, F., Li, Y., Wong, F.S. and Chua, H.C. (2008), "Impact of biological constituents and properties of activated sludge on membrane fouling in a novel submerged membrane bioreactor", Desalination, 225(1-3), 356-365. https://doi.org/10.1016/j.desal.2007.07.015.
- Li, Y. and Wang, S. (2019), Supercritical Water Oxidation for Environmentally Friendly Treatment of Organic Wastes, in Advanced Supercritical Fluids Technologies. IntechOpen.
- Liu, N., Cui, H.Y. and Yao, D. (2009), "Decomposition and oxidation of sodium 3, 5, 6-trichloropyridin-2- ol in sub-and supercritical water", Process Safe. Environ., 87(6), 387-394. https://doi.org/10.1016/j.psep.2009.07.004.
- Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J. and Wang, X.C. (2014), "A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment", Sci. Total Environ., 473, 619-641. https://doi.org/10.1016/j.scitotenv.2013.12.065.
- M'Arimi, M.M., Mecha, C.A., Kiprop, A.K. and Ramkat, R. (2020), "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production", Renew. Sust. Energy Rev., 121, 109669. https://doi.org/10.1016/j.rser.2019.109669.
-
Mahtab, M.S. and Farooqi, I.H. (2020), "UV-
$TiO_2$ process for landfill leachate treatment: Optimization by response surface methodology", Int. J. Res. Eng. Appl. Manage., 5(12), 14-18. https://doi.org/10.35291/2454-9150.2020.0160. - Medeiros, D.R., Pires, E.C. and Mohseni, M. (2008), "Ozone oxidation of pulp and paper wastewater and its impact on molecular weight distribution of organic matter", Ozone Sci. Eng., 30(1), 105-110. https://doi.org/10.1080/01919510701817914.
- Michalska, K., Miazek, K., Krzystek, L. and Ledakowicz, S. (2012), "Influence of pretreatment with Fenton's reagent on biogas production and methane yield from lignocellulosic biomass", Bioresource Technol., 119, 72-78. https://doi.org/10.1016/j.biortech.2012.05.105.
- Miklos, D.B., Remy, C., Jekel, M., Linden, K.G., Drewes, J.E. and Hubner, U. (2018), "Evaluation of advanced oxidation processes for water and wastewater treatment-A critical review", Water Res., 139, 118-131. https://doi.org/10.1016/j.watres.2018.03.042.
- Mills, A. and Le Hunte, S. (1997), "An overview of semiconductor photocatalysis", J. Photochem. Photobiol. A Chem., 108(1), 1-35. https://doi.org/10.1016/S1010-6030(97)00118-4.
- Munter, R. (2001), "Advanced oxidation processes-current status and prospects", Proc. Estonian Acad. Sci. Chem., 50(2), 59-80.
- Nebel, C., Gottschling, R.D., Hutchison, R.L., McBride, T.J., Taylor, D.M., Pavoni, J.L and Fleischman, M. (1973), "Ozone disinfection of industrial-municipal secondary effluents", J. Water Pollut. Control Fed., 45(12), 2493-2507.
- Nemes, A., Fabian, I. and Van Eldik, R. (2000), "Kinetics and mechanism of the carbonate ion inhibited aqueous ozone decomposition", J. Phys. Chem. A, 104(34), 7995-8000. https://doi.org/10.1021/jp000972t.
- Oh, B.S., Park, S.J., Lee, H.G., Kim, K.S., Lee, K.H. and Kang, J.W. (2003), "Application of ozone/UV process for the reclamation of sewage treatment plant effluent", J. Water Environ. Technol., 1(2), 141- 153. https://doi.org/10.2965/jwet.2003.141.
- Oller, I., Malato, S. and Sanchez-Perez, J.A. (2011), "Combination of advanced oxidation processes and biological treatments for wastewater decontamination-A review", Sci. Total Environ., 409(20), 4141- 4166. https://doi.org/10.1016/j.scitotenv.2010.08.061.
- Oturan, M.A. and Aaron, J.J. (2014), "Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review", Crit. Rev. Env. Sci. Tec., 44(23), 2577-2641. https://doi.org/10.1080/10643389.2013.829765.
- Pachhade, K., Sandhya, S. and Swaminathan, K. (2009), "Ozonation of reactive dye, Procion red MX-5B catalyzed by metal ions", J. Hazard. Mater., 167(1-3), 313-318. https://doi.org/10.1016/j.jhazmat.2008.12.126.
- Pandey, A.K., Vishwakarma, P., Thakur, S. and Krishna, V. (2019), "A review of degradation of organic waste in contaminated water by ozone and nanomaterials", J. Emerg. Technol. Innov. Res., 6(1), 748-766.
- Paraskeva, P. and Graham, N.J. (2002), "Ozonation of municipal wastewater effluents", Water Environ. Res., 74(6), 569-581. https://doi.org/10.2175/106143002X140387.
- Parga, J.R., Shukla, S.S. and Carrillo-Pedroza, F.R. (2003), "Destruction of cyanide waste solutions using chlorine dioxide, ozone and titania sol", Waste Manage., 23(2), 183-191. https://doi.org/10.1016/S0956- 053X(02)00064-8.
- Paucar, N.E., Kim, I., Tanaka, H. and Sato, C. (2019), "Ozone treatment process for the removal of pharmaceuticals and personal care products in wastewater", Ozone Sci. Eng., 41(1), 3-16. https://doi.org/10.1080/01919512.2018.1482456.
- Peyton, G.R. and Glaze, W.H. (1988), "Destruction of pollutants in water with ozone in combination with ultraviolet radiation. 3. Photolysis of aqueous ozone", Environ. Sci. Technol., 22(7), 761-767. https://doi.org/10.1021/es00172a003.
- Pouran, S.R., Raman, A.A.A. and Daud, W.M.A.W. (2014), "Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions", J. Clean. Prod., 64, 24-35. https://doi.org/10.1016/j.jclepro.2013.09.013.
- Praveen, V. and Sunil, B.M. (2016), "Potential use of waste rubber shreds in drainage layer of landfills-An experimental study", Adv. Environ. Res., 5(3), 201-211. http://doi.org/10.12989/aer.2016.5.3.201.
- Rajeshwar, K.I.J.G., Ibanez, J.G. and Swain, G.M. (1994), "Electrochemistry and the environment", J. Appl. Electrochem., 24(11), 1077-1091. https://doi.org/10.1007/BF00241305.
- Rajeswari, R. and Kanmani, S. (2009), "A study on synergistic effect of photocatalytic ozonation for carbaryl degradation", Desalination, 242(1-3), 277-285. https://doi.org/10.1016/j.desal.2008.05.007.
- Ratola, N., Cincinelli, A., Alves, A. and Katsoyiannis, A. (2012), "Occurrence of organic microcontaminants in the wastewater treatment process. A mini review", J. Hazard. Mater., 239, 1-18. https://doi.org/10.1016/j.jhazmat.2012.05.040.
- Rice, R.G. (1996), "Applications of ozone for industrial wastewater treatment-a review", Ozone Sci. Eng., 18(6), 477-515. https://doi.org/10.1080/01919512.1997.10382859.
- Riebel, A.H., Erickson, R.E., Abshire, C.J. and Bailey, P.S. (1960), "Ozonation of carbon-nitrogen double bonds. I. Nucleophilic attack of ozone1", J. Amer. Chem. Soc., 82(7), 1801-1807. https://doi.org/10.1021/ja01492a062.
- Ried, A., Mielcke, J. and Wieland, A. (2009), "The potential use of ozone in municipal wastewater", Ozone Sci. Eng., 31(6), 415-421. https://doi.org/10.1080/01919510903199111.
-
Rosenfeldt, E.J., Linden, K.G., Canonica, S. and Von Gunten, U. (2006), "Comparison of the efficiency of OH radical formation during ozonation and the advanced oxidation processes
$O_3/H_2O_2$ and$UV/H_2O_2$ ", Water Res., 40(20), 3695-3704. https://doi.org/10.1016/j.watres.2006.09.008. - Saien, J., Ojaghloo, Z., Soleymani, A.R. and Rasoulifard, M.H. (2011), "Homogeneous and heterogeneous AOPs for rapid degradation of Triton X-100 in aqueous media via UV light, nano titania hydrogen peroxide and potassium persulfate", Chem. Eng. J., 167(1), 172-182. https://doi.org/10.1016/j.cej.2010.12.017.
- Sanchez-Polo, M., Rivera-Utrilla, J., Prados-Joya, G., Ferro-Garcia, M.A. and Bautista-Toledo, I. (2008), "Removal of pharmaceutical compounds, nitroimidazoles, from waters by using the ozone/carbonsystem", Water Res., 42(15), 4163-4171. https://doi.org/10.1016/j.watres.2008.05.034.
- Selcuk, H. (2005), "Decolorization and detoxification of textile wastewater by ozonation and coagulation processes", Dyes Pigments, 64(3), 217-222. https://doi.org/10.1016/j.dyepig.2004.03.020.
- Sharma, A., Verma, M. and Haritash, A.K. (2016), "Degradation of toxic azo dye (AO7) using Fenton's process", Adv. Environ. Res., 5(3), 189-200. http://doi.org/10.12989/aer.2016.5.3.189.
- Staehelin, J. and Hoigne, J. (1982), "Decomposition of ozone in water: Rate of initiation by hydroxide ions and hydrogen peroxide", Environ. Sci. Technol., 16(10), 676-681. https://doi.org/10.1021/es00104a009.
- Swami, D. and Buddhi, D. (2006), "Removal of contaminants from industrial wastewater through various non-conventional technologies: A review", Int. J. Environ. Pollut., 27(4), 324-346. https://doi.org/10.1504/IJEP.2006.010576.
- Thompson, G., Swain, J., Kay, M. and Forster, C.F. (2001), "The treatment of pulp and paper mill effluent: A review", Bioresource Technol., 77(3), 275-286. https://doi.org/10.1016/S0960-8524(00)00060-2.
- Tijani, J.O., Fatoba, O.O., Madzivire, G. and Petrik, L.F. (2014), "A review of combined advanced oxidation technologies for the removal of organic pollutants from water", Water Air Soil Pollut., 225(9), 2102. https://doi.org/10.1007/s11270-014-2102-y.
- Tizaoui, C., Bouselmi, L., Mansouri, L. and Ghrabi, A. (2007), "Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems", J. Hazard. Mater., 140(1-2), 316-324. https://doi.org/10.1016/j.jhazmat.2006.09.023.
- Tofani, G. and Richard, Y. (1995), "Use of ozone for the treatment of a combined urban and industrial effluent: A case history", Ozone Sci. Eng., 17(3), 345-354. https://doi.org/10.1080/01919519508547540.
- Tungler, A., Szabados, E. and Hosseini, A.M. (2015), "Wet air oxidation of aqueous wastes", Wastewater Treat. Eng., 153. http://doi.org/10.5772/60935.
- Turhan, K. and Ozturkcan, S.A. (2013), "Decolorization and degradation of reactive dye in aqueous solution by ozonation in a semi-batch bubble column reactor", Water Air Soil Pollut., 224(1), 1353. https://doi.org/10.1007/s11270-012-1353-8.
- Tyrrell, S.A., Rippey, S.R. and Watkins, W.D. (1995), "Inactivation of bacterial and viral indicators in secondary sewage effluents, using chlorine and ozone", Water Res., 29(11), 2483-2490. https://doi.org/10.1016/0043-1354(95)00103-R.
- US Environmental Protection Agency. (1999), Wastewater Technology Fact Sheet: Ozone Disinfection, https://www3.epa.gov/npdes/pubs/ozon.pdf.
- Valdes, H. and Zaror, C.A. (2006), "Heterogeneous and homogeneous catalytic ozonation of benzothiazole promoted by activated carbon: Kinetic approach", Chemosphere, 65(7), 1131-1136. https://doi.org/10.1016/j.chemosphere.2006.04.027.
- Venosa, A.D., Petrasek, A.C., Brown, D., Sparks, H.L. and Allen, D.M. (1984), "Disinfection of secondary effluent with ozone/UV", J. Water Pollut. Control Fed., 137-142.
- Verma, M. and Haritash, A.K. (2020), "Review of advanced oxidation processes (AOPs) for treatment of pharmaceutical wastewater", Adv. Environ. Res., 9(1), 1-17. https://doi.org/10.12989/aer.2020.9.1.001.
- Vlyssides, A.G., Karlis, P.K. and Mahnken, G. (2003), "Influence of various parameters on the electrochemical treatment of landfill leachates", J. Appl. Electrochem., 33(2), 155-159. https://doi.org/10.1023/A:1024049324967.
- Von Gunten, U. (2003), "Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine", Water Res., 37(7), 1469-1487. https://doi.org/10.1016/S0043-1354(02)00458- X.
- Weavers, L.K. and Hoffmann, M.R. (1998), "Sonolytic decomposition of ozone in aqueous solution: Mass transfer effects", Environ. Sci. Technol., 32(24), 3941-3947. https://doi.org/10.1021/es980620o.
- Wei, C., Zhang, F., Hu, Y., Feng, C. and Wu, H. (2017), "Ozonation in water treatment: the generation, basic properties of ozone and its practical application", Rev. Chem. Eng., 33(1), 49-89. https://doi.org/10.1515/revce-2016-0008.
- Westerhoff, P., Yoon, Y., Snyder, S. and Wert, E. (2005), "Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes", Environ. Sci. Technol., 39(17), 6649-6663. https://doi.org/10.1021/es0484799.
- Wu, K., Zhang, F., Wu, H. and Wei, C. (2018), "The mineralization of oxalic acid and bio-treated coking wastewater by catalytic ozonation using nickel oxide", Environ. Sci. Pollut. Res., 25(3), 2389-2400. https://doi.org/10.1007/s11356-017-0597-7.
- Yang, B., Cheng, Z., Yuan, T., Gao, X., Tan, Y., Ma, Y. and Shen, Z. (2018), "Temperature sensitivity of nitrogen-containing compounds decomposition during supercritical water oxidation (SCWO)", J. Taiwan Inst. Chem. Eng., 93, 31-41. https://doi.org/10.1016/j.jtice.2018.07.029.
- Ye, G., Luo, P., Zhao, Y., Qiu, G., Hu, Y., Preis, S. and Wei, C. (2020), "Three-dimensional Co/Ni bimetallic organic frameworks for high-efficient catalytic ozonation of atrazine: Mechanism, effect parameters, and degradation pathways analysis", Chemosphere, 126767. https://doi.org/10.1016/j.chemosphere.2020.126767.
- Zhang, F., Wei, C., Hu, Y. and Wu, H. (2015), "Zinc ferrite catalysts for ozonation of aqueous organic contaminants: Phenol and bio-treated coking wastewater", Sep. Purif. Technol., 156, 625-635. https://doi.org/10.1016/j.seppur.2015.10.058.
- Zhang, F., Wei, C., Wu, K., Zhou, H., Hu, Y. and Preis, S. (2017), "Mechanistic evaluation of ferrite AFe2O4 (A= Co, Ni, Cu, and Zn) catalytic performance in oxalic acid ozonation", Appl. Catal. A General, 547, 60-68. https://doi.org/10.1016/j.apcata.2017.08.025.
- Zhang, F., Wu, K., Zhou, H., Hu, Y., Wu, H. and Wei, C. (2018), "Ozonation of aqueous phenol catalyzed by biochar produced from sludge obtained in the treatment of coking wastewater", J. Environ. Manage., 224, 376-386. https://doi.org/10.1016/j.jenvman.2018.07.038.
- Zhang, H., Duan, L. and Zhang, D. (2006), "Decolorization of methyl orange by ozonation in combination with ultrasonic irradiation", J. Hazard. Mater., 138(1), 53-59. https://doi.org/10.1016/j.jhazmat.2006.05.034.
- Zhang, J., Wang, S., Li, Y., Lu, J., Chen, S. and Luo, X. (2017), "Supercritical water oxidation treatment of textile sludge", Environ. Technol., 38(15), 1949-1960. https://doi.org/10.1080/09593330.2016.1242655.
- Zhou, H. and Smith, D.W. (2002), "Advanced technologies in water and wastewater treatment", J. Environ. Eng. Sci., 1(4), 247-264. https://doi.org/10.1139/s02-020.
Cited by
- A comprehensive review of the Fenton-based approaches focusing on landfill leachate treatment vol.10, pp.1, 2020, https://doi.org/10.12989/aer.2021.10.1.059
- Removal of Micropollutants by Ozone-Based Processes vol.9, pp.6, 2020, https://doi.org/10.3390/pr9061013