DOI QR코드

DOI QR Code

The impact of municipal waste disposal of heavy metals on environmental pollution: A case study for Tonekabon, Iran

  • Azizpour, Aziz (Department of Civil Engineering, Islamic Azad University of Urmia) ;
  • Azarafza, Mohammad (Department of Geology, University of Isfahan) ;
  • Akgun, Haluk (Geotechnology Unit, Department of Geological Engineering, Middle East Technical University)
  • Received : 2020.06.21
  • Accepted : 2020.08.13
  • Published : 2020.09.25

Abstract

Municipal solid waste disposal is considered as one of the most important risks for environmental contamination which necessitates the development of strategies to reduce destructive consequences on the ecosystem as related especially to heavy metal accumulation. This study investigates heavy metal (i.e., As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn) accumulation in the Tonekabon region, NW of Iran that is related to city waste disposal and evaluates the environmental impact in the Caspian Sea coastal region. For this purpose, after performing field studies and collecting 50 soil specimens from 5 sites of the study area, geochemical tests (i.e., inductively coupled plasma mass spectrometry, atomic absorption spectroscopy and x-ray fluorescence) were conducted on the soil specimens collected from the 5 sites (named as Sites A1, A2, A3, A4 and A5) and the results were used to estimate the pollution indices (i.e., geo-accumulation index, normalized enrichment factor, contamination factor, and pollution load index). The obtained indices were utilized to assess the eco-toxicological risk level in the landfill site which indicated that the city has been severely contaminated by Cu, Mn, Ni, Pb and Zn. These levels have been developed along the stream towards the nearshore areas indicating uptake of soil degradation. The heavy metal contamination was classified to range from unpolluted to highly polluted, which indicated serious heavy metal pollution in the study area as related to municipal solid waste disposal in Tonekabon.

Keywords

References

  1. Aghanabati, A. (2007), Geology of Iran, Geological Survey of Iran press, Tehran, Iran.
  2. Akgun, H., Ada, M. and Kockar, M.K. (2015), "Performance assessment of a bentonite-sand mixture for nuclear waste isolation at the potential Akkuyu nuclear waste disposal Site, southern Turkey", Environ. Earth Sci., 73(10), 6101-6116. https://doi.org/10.1007/s12665-014-3837-x.
  3. Akgun, H., Turkmenoglu, A.G., Met, I., Yal, G.P. and Kockar, M.K. (2017), "The use of Ankara clay as a compacted clay liner for landfill sites", Clay Miner., 52(3), 391-412. https://doi.org/10.1180/claymin.2017.052.3.08.
  4. Azarafza, M. and Mokhtari, M.H. (2013), "Evaluation of drought effect on Urmia lake salinity changes using remote sensing techniques", Arid Biom. Sci. Res. J., 3(2), 1-14.
  5. Azarafza, M. and Asghari-Kaljahi, E. (2016), Applied Geotechnical Engineering, Negarkhane Publication, Isfahan, Iran.
  6. Azarafza, M. and Ghazifard, A. (2016), "Urban geology of Tabriz city: Environmental and geological constraints", Adv. Environ. Res., 5(2), 95-108. https://doi.org/10.12989/aer.2016.5.2.095.
  7. Azarafza, M., Asghari-Kaljahi, E. and Moshrefy-far, M.R. (2015), "Effects of clay nanoparticles added to the bonab landfill soil to reduce the permeability and control of leachate", Iran. J. Environ. Geol., 8(26), 7-18.
  8. Bhuiyan, M.A.H., Parvez, L., Islam, M.A., Dampare, S.B. and Suzuki, S. (2010), "Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh", J. Hazard. Mater., 173(1-3), 384-392. https://doi.org/10.1016/j.jhazmat.2009.08.085.
  9. Calvo, F., Moreno, B., Zamorano, M. and Szanto, M. (2005), "Environmental diagnosis methodology for municipal waste landfills", Waste Manage., 25(8), 768-779. https://doi.org/10.1016/j.wasman.2005.02.019.
  10. Chen, X., Wong, J.T., Mo, W., Man, Y., Ng, C.W. and Wong, M. (2016), "Ecological performance of the restored south east new territories (SENT) landfill in Hong Kong (2000-2012)", Land Degrad. Dev., 27(6), 1664-1676. https://doi.org/10.1002/ldr.2366.
  11. Darvishzadeh, A. (2015), Geology of Iran: Stratigraphy, Tectonics, Metamorphism and Magmatism, Islamic Advertising Organization International Publishing Company, Tehran, Iran.
  12. De Pauli, A.R., Espinoza-Quinones, F.R., Trigueros, D.E.G., Modenes, A.N., de Souza, A.R.C., Borba, F.H. and Kroumov, A.D. (2018), "Integrated two-phase purification procedure for abatement of pollutants from sanitary landfill leachates", Chem. Eng. J., 334, 19-29. https://doi.org/10.1016/j.cej.2017.10.028.
  13. El-Fadel, M., Findikakis, A.N. and Leckie, J.O. (1997), "Environmental impacts of solid waste landfilling", J. Environ. Manage., 50(1), 1-25. https://doi.org/10.1006/jema.1995.0131.
  14. European Commission, EC (2012), Waste Prevention-Handbook: Guidelines on Waste Prevention Programmes, Directorate General Environment.
  15. European Commission (2017), Guidance on Municipal Waste Data Collection, Directorate E: Sectoral and Regional Statistics, Unit E2: Environmental Statistics and Accounts, Sustainable Development, European Commission.
  16. European Community (1998), The Quality of Water Intended to Human Consumption, Directive 1998/83/EC, 32-54, EC.
  17. Fernandes, A., Spranger, P., Fonseca, A.D., Pacheco, M.J., Ciriaco, L. and Lopes, A. (2014), "Effect of electrochemical treatments on the biodegradability of sanitary landfill leachates", Appl. Catal. B Environ., 144, 541-520. https://doi.org/10.1016/j.apcatb.2013.07.054.
  18. Ghazifard, A., Nikoobakht, S. and Azarafza, M. (2016), "Municipal waste landfill site selection based on environmental, geological and geotechnical multi-criteria: A case Study", Iran. J. Environ. Technol., 2(1), 49-67. https://doi.org/10.22108/IJET.2018.107396.1003.
  19. Hakanson, L. (1980), "Ecological risk index for aquatic pollution control: A sedimentological approach", Water Res., 14(8), 975-1001. https://doi.org/10.1016/0043-1354(80)90143-8.
  20. Haswell, S.J. (1991), Atomic Absorption Spectrometry: Theory, Design and Applications, Elsevier Science, Amsterdam, The Netherlands.
  21. Hong, K.J., Tokunaga, S. and Kajiuchi, T. (2002), "Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils", Chemosphere, 49(4), 379-387. https://doi.org/10.1016/s0045-6535(02)00321-1.
  22. Iran Meteorological Organization (2019), Tonekabon Region Climatological/Meteorological Data, Iran Meteorological Data Portal, https://www.irimo.ir.
  23. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B. and Beeregowda, K.N. (2014), "Toxicity, mechanism and health effects of some heavy metals", Interdiscip. Toxicol., 7(2), 60-72. https://doi.org/10.2478/intox-2014-0009.
  24. Jarvis, K.E. (2012), Handbook of Inductively Coupled Plasma Mass Spectrometry, Springer, New York, U.S.A.
  25. Kanmani, S. and Gandhimathi, R. (2012), "Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site", Appl. Water Sci., 3(1), 193-205. https://doi.org/10.1007/s13201-012-0072-z.
  26. Lenz, S., Bohm, K., Ottner, R. and Huber-Humer, M. (2016), "Determination of leachate compounds relevant for landfill aftercare using FT-IR spectroscopy", Waste Manage., 55, 321-329. https://doi.org/10.1016/j.wasman.2016.02.034.
  27. Li, W., Li, J., Liu, S., Zhang, R., Qi, W., Zhang, R. and Lu, J. (2016), "Magnitude of species diversity effect on aboveground plant biomass increases through successional time of abandoned farmlands on the eastern Tibetan plateau of China", Land Degrad. Dev., 28(1), 370-378. https://doi.org/10.1002/ldr.2607.
  28. Liu, J., Li, Y., Zhang, B., Cao, J., Cao, Z. and Domagalski, J. (2009), "Ecological risk of heavy metals in sediments of the Luan river source water", Ecotoxicol., 18(6), 748-758. https://doi.org/10.1007/s10646-009-0345-y.
  29. Mandal, A. and Sengupta, D. (2006), "An assessment of soil contamination due to heavy metals around a coal-fired thermal power plant in India", Environ. Geol., 51(3), 409-420. https://doi.org/10.1007/s00254-006-0336-8.
  30. Margui, E. (2013), X-Ray Fluorescence Spectrometry and Related Techniques: An Introduction, Momentum Press, New York, U.S.A.
  31. Mendil, D., Unal, O.F., Tuzen, M. and Soylak, M. (2010), "Determination of trace metals in different fish species and sediments from the River Yesilirmak in Tokat, Turkey", Food Chem. Toxicol., 48(5), 1383-1392. https://doi.org/10.1016/j.fct.2010.03.006.
  32. Met, I. and Akgun, H. (2015), "Geotechnical evaluation of Ankara clay as a compacted clay liner", Environ. Earth Sci., 74(4), 2991-3006. https://doi.org/10.1007/s12665-015-4330-x.
  33. Met, I., Akgun, H. and Turkmenoglu, A.G. (2005), "Environmental geological and geotechnical investigations related to the potential use of Ankara clay as a compacted landfill liner material, Turkey", Environ. Geol., 47(2), 225-236. https://doi.org/10.1007/s00254-004-1147-4.
  34. Morillo, J., Usero, J. and Gracia, I. (2002), "Heavy metal fractionation in sediments from the Tinto River (Spain)", Int. J. Environ. Anal. Chem., 82(4), 245-257. https://doi.org/10.1080/03067310290009523.
  35. Muller, G.T., Giacobbo, A., Chiaramonte, E.A.S., Rodrigues, M.A.S., Meneguzzi, A. and Bernardes, A.M. (2015), "The effect of sanitary landfill leachate aging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process", Waste Manage., 36, 177-183. https://doi.org/10.1016/j.wasman.2014.10.024.
  36. Rashed, M.N., Gad, A.A. and Abd Eldaiem, A.M. (2018), "Preparation and characterization of green adsorbent from waste glass and its application for the removal of heavy metals from well water", Adv. Environ. Res., 7(1), 53-71. https://doi.org/10.12989/aer.2018.7.1.053.
  37. Riahi, K., Chaabane, S. and Thayer, B.B. (2017), "Marble wastes as amendments to stabilize heavy metals in Zn-Electroplating sludge", Adv. Environ. Res., 6(1), 15-23. https://doi.org/10.12989/aer.2017.6.1.015.
  38. Sakan, S.M., Djordjevic, D.S., Manojlovic, D.D. and Polic, P.S. (2009), "Assessment of heavy metal pollutants accumulation in the Tisza river sediments", J. Environ. Manage., 90(11), 3382-3390. https://doi.org/10.1016/j.jenvman.2009.05.013.
  39. Samadder, S.R., Prabhakar, R., Khan, D., Kishan, D. and Chauhan, M.S. (2017), "Analysis of the contaminants released from municipal solid waste landfill site: A case study", Sci. Total Environ., 580, 593-601. https://doi.org/10.1016/j.scitotenv.2016.12.003.
  40. Samuding, K. (2009), "Distribution of heavy metals profile in groundwater system at solid waste disposal site", Eur. J. Sci. Res., 37(1), 58-66.
  41. Tameh, F.I., Asadollahfardi, G. and Darban, A.K. (2017), "Mathematical model for reactive transport of heavy metals in soil column: Based on PHREEQC and HP1 simulators", Adv. Environ. Res., 6(1), 67-81. https://doi.org/10.12989/aer.2017.6.1.067.
  42. Tomlinson, D.C., Wilson, J.G., Harris, C.R. and Jeffery, D.W. (1980), "Problems in the assessment of heavy metals levels in estuaries and the formation of a pollution index", Helgolander Meeresuntersuchungen, 33(1), 566-575. https://doi.org/10.1007/BF02414780.
  43. United States Environmental Protection Agency (2006), National Recommended Water Quality Criteria, USEPA, Office of Water, Office of Science and Technology, EPA Web Archive, U.S.A.
  44. United States Environmental Protection Agency, (2009), National Primary Drinking Water Regulations, EPA 816-F-09-004, United States Environmental Protection Agency, USEPA, U.S.A.
  45. USEPA Code of Practice (2007), Environmental Risk Assessment for Unregulated Waste Disposal Sites, United State Environmental Protection Agency, U.S.A.
  46. Uyan, M. (2014), "MSW landfill site selection by combining AHP with GIS for Konya, Turkey", Environ. Earth Sci., 71(4), 1629-1639. https://doi.org/10.1007/s12665-013-2567-9.
  47. Varol, M. (2011), "Assessment of heavy metal contamination in sediments of the Tigris river (Turkey) using pollution indices and multivariate statistical techniques", J. Hazard. Mater., 195, 355-364. https://doi.org/10.1016/j.jhazmat.2011.08.051.
  48. Vasquez, M.I. and Fatta-Kassinos, D. (2013), "Is the evaluation of "traditional" physicochemical parameters sufficient to explain the potential toxicity of the treated wastewater at sewage treatment plants?", Environ. Sci. Pollut. Res., 20(6), 3516-3528. https://doi.org/10.1007/s11356-013-1637-6.
  49. Wong, J.T., Chen, X., Mo, W., Man, Y., Ng, C.W. and Wong, M. (2016), "Restoration of plant and animal communities in a sanitary landfill: A 10-year case study in Hong Kong", Land Degrad. Dev., 27(3), 490- 499. https://doi.org/10.1002/ldr.2402.
  50. World Health Organization (2004), Guidelines for Drinking Water Quality, World Health Organization, Geneva, Switzerland.
  51. Wuana, R.A., Eneji, I.S. and Naku, J.U. (2016), "Single and mixed chelants-assisted phytoextraction of heavy metals in municipal waste dump soil by castor", Adv. Environ. Res., 5(1), 19-35. https://doi.org/10.12989/aer.2016.5.1.019.
  52. Wuana, R.A., Eneji, I.S. and Ugwu, E.C. (2017), "Heavy metals leaching behavior and ecological risks in water and wastewater treatment sludges", Adv. Environ. Res., 6(4), 281-299. https://doi.org/10.12989/aer.2017.6.4.281.
  53. Yal, G.P. and Akgun, H. (2013), "Landfill site selection and landfill liner design for Ankara, Turkey", Environ. Earth Sci., 70(6), 2729-2752. https://doi.org/10.1007/s12665-013-2334-y.
  54. Yal, G.P. and Akgun, H. (2014), "Landfill site selection utilizing TOPSIS methodology and clay liner geotechnical characterization: A case study for Ankara, Turkey", B. Eng. Geol. Environ., 73(2), 369-388. https://doi.org/10.1007/s10064-013-0562-8.
  55. Yuan, H., Wang, Y., Kobayashi, N., Zhao, D. and Xing, S. (2015), "Study of fuel properties of torrefied municipal solid waste", Energy Fuels, 29(8), 4976-4980. https://doi.org/10.1021/ef502277u.