References
- Alver, A., Karaarslan, M. and Kilic, A. (2016), "The catalytic activity of the iron-coated pumice particles used as heterogeneous catalysts in the oxidation of natural organic matter by H2O2", Environ. Technol., 37(16), 2040-2047. https://doi.org/10.1080/09593330.2016.1139632.
-
Awazu, K. and Kawazoe, H. (2003), "Strained Si-O=Si bonds in amorphous
$SiO_2$ materials: A family member of active centers in radio, photo, and chemical responses", J. Appl. Phys., 94(10), 6243-6262. https://doi.org/10.1063/1.1618351. - Azmi, N.H.M., Vadivelu, V.M. and Hameed, B.H. (2014), "Iron-clay as a reusable heterogeneous Fenton like catalyst for decolorization of acid green 25", Desalin. Water Treat., 52(28-30), 5583-5593. https://doi.org/10.1080/19443994.2013.814009.
- Chen, A., Ma, X. and Sun, H. (2008), "Decolorization of KN-R catalyzed by Fe-containing Y and ZSM-5 zeolites", J. Hazard. Mater., 156, 568-575. https://doi.org/10.1016/j.jhazmat.2007.12.059.
- Cifci, D.I. and Meric, S. (2015), "A review on pumice for water and wastewater treatment", Desalin. Water Treat., 57(39), 18131-18143. https://doi.org/10.1080/19443994.2015.1124348.
-
Cifci, D.I. and Meric, S. (2015b), "Oxidative removal of methyl red dye by Fe supported pumice in presence of
$H_2O_2$ ", J. Desalin. Water Purif., 1(1), 6-11. - C ifci, D.I. and Meric, S. (2017), "Single and binary adsorption of iron and manganese in synthetic water using activated pumice composites: Effect of mono and divalent ions, desorption and reuse, isotherms", Desalin. Water Treat., 71, 52-61. https://doi.org/10.5004/dwt.2017.20632.
- Das, S. and Hendry, M.J. (2011), "Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes", Chem. Geol., 290(3-4), 101-108. https://doi.org/10.1016/j.chemgeo.2011.09.001.
- Daud, N.K., Ahmad, M.A. and Hameed, B.H. (2010), "Decolorization of acid red 1 dye solution by Fentonlike process using Fe-montmorillonite K10 catalyst", Chem. Eng. J., 165(1), 111-116. https://doi.org/10.1016/j.cej.2010.08.072.
- Daud, N.K. and Hameed, B.H. (2011), "Acid red 1 dye decolorization by heterogeneous Fenton-like reaction using Fe/kaolin catalyst", Desalination, 269(1-3), 291-293. https://doi.org/10.1016/j.desal.2010.11.016.
- Dukkanci, M., Gunduz, G., Yilmaz, S., Yaman, Y.C., Prikhod'ko, R.V. and Stolyarova, I.V. (2010), "Characterization and catalytic activity of CuFeZSM-5 catalysts for oxidative degradation of rhodamine 6G in aqueous solutions", Appl. Catal. B Environ., 95(3-4), 270-278. https://doi.org/10.1016/j.apcatb.2010.01.004.
-
Guru, S., Mishra, D., Singh, M., Amritphale, S.S. and Josh, S. (2016), "Effect of
$SO_4{^2-}$ ,$Cl^-$ and$NO_3^-$ anions on the formation of iron oxide nanoparticles via microwave synthesis", Prot. Met. Phys. Chem. S., 52(4), 627-631. https://doi.org/10.1134/S2070205116040146. - Hassan, H. and Hameed, B.H. (2011), "Fe-clay as effective heterogeneous Fenton catalyst for the decolorization of reactive blue 4", Chem. Eng. J., 171(3), 912-918. https://doi.org/10.1016/j.cej.2011.04.040.
-
Jayarathne, L., Ng, W.J., Bandara, A., Vitanage, M., Dissanayake, C.B. and Weerasooriya, R. (2012), "Fabrication of succinic acid-
$\gamma$ -$Fe_2O_3$ nano core-shells", Colloid. Surf. A, 403, 96-102. https://doi.org/10.1016/j.colsurfa.2012.03.061. - Kaplan Bekaroglu, S.S., Yigit, N.O., Harman, B.I. and Kitis, M. (2016), "Hybrid adsorptive and oxidative removal of natural organic matter using iron oxide-coated pumice particles", J. Chem., 3108034. http://doi.org/10.1155/2016/3108034.
- Karimaian, K.A., Amrane, A., Kazemian, H., Panahi, R. and Zarrabi, M. (2013), "Retention of phosphorous ions on natural and engineered waste pumice: Characterization, equilibrium, competing ions, regeneration, kinetic, equilibrium and thermodynamic study", Appl. Surf. Sci., 284, 419-431. https://doi.org/10.1016/j.apsusc.2013.07.114.
- Kitis, M. and Kaplan, S.S. (2007), "Advanced oxidation of natural organic matter using hydrogenperoxide and iron-coated pumice particles", Chemosphere, 68(10), 1846-1853. https://doi.org/10.1016/j.chemosphere.2007.03.027.
- Legodi, M.A. and de Waal, D. (2007), "The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste", Dyes Pigments, 74(1), 161-168. https://doi.org/10.1016/j.dyepig.2006.01.038.
- Messele, A., Soares, O.S.G.P., O rfao, J.J.M., Bengoa, C., Stuber, F., Fortuny, A., Fabregat, A. and Font, J. (2015), "Effect of activated carbon surface chemistry on the activity of ZVI/AC catalysts for Fenton-like oxidation of phenol", Catal. Today, 240, 73-79. https://doi.org/10.1016/j.cattod.2014.03.063.
- Nogueira, A.E., Castro, I.A., Giroto, A.S. and Magriotis, Z.M. (2014), "Heterogeneous Fenton-like catalytic removal of methylene blue dye in water using magnetic nanocomposite (MCM-41/Magnetite)", J. Catal, 712067. http://doi.org/10.1155/2014/712067.
- Pastrana-Martinez, L.M., Pereira, N., Lima, R., Faria, J.L., Gomes, H.T. and Silva, A.M.T. (2015), "Degradation of diphenhydramine by photo-Fenton using magnetically recoverable iron oxide nanoparticles as catalyst", Chem. Eng. J., 261, 45-52. https://doi.org/10.1016/j.cej.2014.04.117.
- Rache, M.L., Garcia, A.R., Zea, H.R., Silva, A.M.T., Madeira, L.M. and Ramirez, J.H. (2014), "Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst-kinetics with a model based on the Fermi's equation", Appl. Catal. B Environ., 146, 192-200. https://doi.org/10.1016/j.apcatb.2013.04.028.
-
Ramachandran, G. and Kumarasamy, T. (2013), "Degradation of textile dyeing wastewater by a modified solar photo-Fenton process using steel scrap/
$H_2O_2$ ", Clean Soil Air Water, 41(3), 267-274. https://doi.org/10.1002/clen.201100462. - Rusevova, K., Kopinke, F.D. and Georgi, A. (2012), "Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions-Influence of Fe(II)/Fe(III) ratio on catalytic performance", J. Hazard. Mater., 241-242, 433-444. https://doi.org/10.1016/j.jhazmat.2012.09.068.
- Sepehr, M.N., Sivasankar, V., Zarrabi, M. and Kumar, M.S. (2013), "Surface modification of pumice enhancing its fluoride adsorption capacity: An insight into kinetic and thermodynamic studies", Chem. Eng. J., 228, 192-204. https://doi.org/10.1016/j.cej.2013.04.089.
- Sepehr, M.N., Amrane, A., Karimaian, K.A., Zarrabi, M. and Ghaffari, H.R. (2014), "Potential of waste pumice and surface modified pumice for hexavalent chromium removal: Characterization, equilibrium, thermodynamic and kinetic study", J. Taiwan Inst. Chem. Eng., 45(2), 635-647. https://doi.org/10.1016/j.jtice.2013.07.005.
- Shayesteh, H., Rahbar-Kelishami, A. and Norousbeigi, R. (2016), "Evaluation of natural and cationic surfactant modified pumice for congo red removal in batch mode: Kinetic, equilibrium, and thermodynamic studies", J. Mol. Liq., 221, 1-11. https://doi.org/10.1016/j.molliq.2016.05.053.
- Su, C., Li, W., Liu, X., Huang, X. and Yu, X. (2016), "Fe-Mn-sepiolite as an effective heterogeneous Fenton-like catalyst for the decolorization of reactive brilliant blue", Front. Environ. Sci. Eng., 10(1), 37-45. https://doi.org/10.1007/s11783-014-0729-y.
- TWPCR (2004), Turkish Water Pollution Control Regulation, Official Gazette No. 25687, Ankara, Turkey.
- WHO (2007), Guidelines for Drinking-Water Quality, Fourth Edition, NLM Classification: WA 675, Geneva, Switzerland.
- Wu, Y., Yang, M., Hu, S., Wang, L. and Yao, H. (2014), "Characteristics and mechanisms of 4A zeolite supported nanoparticulate zero-valent iron as Fenton-like catalyst to degrade methylene blue", Toxicol. Environ. Chem., 96(2), 227-242. https://doi.org/10.1080/02772248.2014.931960.
- Xavier, S, Gandhimathi, R., Nidheesh, P.V. and Ramesh, S.T. (2015), "Comparison of homogeneous and heterogeneous Fenton processes for the removal of reactive dye magenta MB from aqueous solution", Desalin. Water Treat., 53(1), 109-118. https://doi.org/10.1080/19443994.2013.844083.
-
Xu, L. and Wang, J. (2012), "Fenton-like degradation of 2,4-dichlorophenol using
$Fe_3O_4$ magnetic nanoparticles", Appl. Catal. B Environ., 123, 117-126. https://doi.org/10.1016/j.apcatb.2012.04.028. - Yaman, C. and Gunduz, G. (2015), "A parametric study on the decolorization and mineralization of C.I. reactive red 141 in water by heterogeneous Fenton-like oxidation over FeZSM-5 zeolite", J. Environ. Health Sci., 13(1), 1-12. https://doi.org/10.1186/s40201-015-0162-6.
-
Yang, K., Peng, H., Wen, Y. and Li, N. (2010), "Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated
$Fe_3O_4$ nanoparticles", Appl. Surf. Sci., 256, 3093-3097. https://doi.org/10.1016/j.apsusc.2009.11.079. - Zotov, N., Ebbsjo, I., Timpel, D. and Keppler, H. (1999), "Calculation of raman spectra and vibrational properties of silicate glasses: comparison between Na2Si4O9 and SiO2 glasses", Phys. Rev. B, 60(9), 6383-9397. https://doi.org/10.1103/PhysRevB.60.6383.
Cited by
- A comprehensive review of the Fenton-based approaches focusing on landfill leachate treatment vol.10, pp.1, 2020, https://doi.org/10.12989/aer.2021.10.1.059