DOI QR코드

DOI QR Code

The Expression of Corazonin Neurons in Larvae Stage of Scuttle Fly

  • Park, Hohyun (Department of Biomedical Laboratory Science, Mokpo Science University)
  • Received : 2020.08.26
  • Accepted : 2020.09.10
  • Published : 2020.09.30

Abstract

Scuttle fly which moves abruptly after standing for a while and stop suddenly to rush off again, is a fly species in the Phoridae family. This species like rotten organic materials and it is known to proliferate even in the industrial materials including organic solvents. These characteristic behaviors of the scuttle fly seem to be related to muscular and nervous system or neurotransmitters. Thus, we focused at the neurotransmitter, corazonin (Crz) that is known to be related to resistance to stress and investigated the developmental process of the neurons in the scuttle fly. Corazonin is a neuropeptide being expressed in the central nervous system (CNS) and is known to control mainly physiological functions and behaviors. Its many functions that have been proposed are still in controversy. In this studies, we found that there are three groups of corazoninergic neurons in the larval CNS of the scuttle fly and these neurons undergo distinguishable changes through metamorphic process compared to different fly species. Larva has 3 pairs of Crz neurons at the dorsolateral area of the brain, 1 pair at the dorsomedial brain and 8 pairs at the ventral nerve cord.

Keywords

References

  1. Allan DW, Park D, St Pierre SE, Taghert PH, Thor S. Regulators acting in combinatorial codes also act independently in single differentiating neurons. Neuron. 2005. 45: 689-700. https://doi.org/10.1016/j.neuron.2005.01.026
  2. Allan DW, St Pierre SE, Miguel-Aliaga I, Thor S. Specification of neuropeptide cell identity by the integration of retrograde BMP signaling and a combinatorial transcription factor code. Cell. 2003. 113: 73-86. https://doi.org/10.1016/S0092-8674(03)00204-6
  3. Altstein M, Nassel DR. Neuropeptide signaling in insects (Geary TG, Maule AG. Eds). Neuropeptide Systems as Targets for Parasite and Pest Control. 2010. pp. 155-165.
  4. Awad TA, Truman JW. Postembryonic development of the midline glia in the CNS of Drosophila: proliferation, programmed cell death, and endocrine regulation. Dev Biol. 1997. 187: 283-297. https://doi.org/10.1006/dbio.1997.8587
  5. Baraban SC, Tallent MK. Interneuron Diversity series: Interneuronal neuropeptides - endogenous regulators of neuronal excitability. Trends Neurosci. 2004. 27: 135-142. https://doi.org/10.1016/j.tins.2004.01.008
  6. Benveniste RJ, Thor S, Thomas JB, Taghert PH. Cell type-specific regulation of the Drosophila FMRF-NH2 neuropeptide gene by Apterous, a LIM homeodomain transcription factor. Development. 1998. 125: 4757-4765. https://doi.org/10.1242/dev.125.23.4757
  7. Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM, Abrams JM. Drosophila p53 binds a damage response element at the reaper locus. Cell. 2000. 101: 103-113. https://doi.org/10.1016/S0092-8674(00)80627-3
  8. Cantera R, Veenstra JA, Nassel DR. Post-embryonic development of Corazonin-containing neurons and neruosecretory cells in the Blowfly, Phormia terraenovae. J Comp Neurol. 1994. 350: 559-572. https://doi.org/10.1002/cne.903500405
  9. Cazzamali G, Saxild N, Grimmelikhuijzen C. Molecular cloning and functional expression of a Drosophila corazonin receptor. Biochem Biophys Res Commun. 2002. 298: 31-36. https://doi.org/10.1016/S0006-291X(02)02398-7
  10. Choi SH. "The Regulation of Neuropeptide Corazonin and Its Functional Analyses in Drosophila melanogaster." PhD diss., University of Tennessee. 2009.
  11. Choi SH, Lee G, Monahan P, Park JH. Spatial regulation of Corazonin neuropeptide expression requires multiple cis-acting elements in Drosophila melanogaster. J Comp Neurol. 2008. 507: 1184-1195. https://doi.org/10.1002/cne.21594
  12. Choi YJ, Lee G, Park JH. Programmed cell death mechanisms of identifiable peptidergic neurons in Drosophila melanogaster. Development. 2006. 133: 2223-2232. https://doi.org/10.1242/dev.02376
  13. Choi YJ, Lee G, Hall JC, Park JH. Comparative analysis of Corazonin-encoding genes (Crz's) in Drosophila species and functional insights into Crz-expressing neurons. J Comp Neurol. 2005. 482: 372-385. https://doi.org/10.1002/cne.20419
  14. Draizen TA, Ewer J, Robinow S. Genetic and hormonal regulation of the death of peptidergic neurons in the Drosophila central nervous system. J Neurobiol. 1999. 38: 455-465. https://doi.org/10.1002/(SICI)1097-4695(199903)38:4<455::AID-NEU2>3.0.CO;2-F
  15. Gauthier SA, Hewes RS. Transcriptional regulation of neuropeptide and peptide hormone expression by the Drosophila dimmed and cryptocephal genes. J Exp Biol. 2006. 209: 1803-1815. https://doi.org/10.1242/jeb.02202
  16. Gruntenko N, Chentsova NA, Bogomolova EV, Karpova EK, Glazko GV. The effect of mutations altering biogenic amine metabolism in Drosophila on viability and the response to environmental stresses. Arch Insect Biochem Pysiol. 2004. 55: 55-67. https://doi.org/10.1002/arch.10123
  17. Hansen IA, Sehnal F, Meyer SR, Scheller K. Corazonin gene expression in the waxmoth Galleria mellonella. Insect Mol Biol. 2001. 10: 341-346. https://doi.org/10.1046/j.0962-1075.2001.00272.x
  18. Hauser F, Cazzamali G, Williamson M, Blenau W, Grimmelikhuijzen CJ. A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Prog Neurobiol. 2006. 80: 1-19. https://doi.org/10.1016/j.pneurobio.2006.07.005
  19. Hokfelt T. Neuropeptides in perspective: the last ten years. Neuron. 1991. 7: 867-879. https://doi.org/10.1016/0896-6273(91)90333-u
  20. Horodyski FM, Ewer J, Riddiford LM, Truman JW. Isolation, characterization and expression of the eclosion hormone gene of Drosophila melanogaster. Eur J Biochem. 1993. 215: 221-228. https://doi.org/10.1111/j.1432-1033.1993.tb18026.x
  21. Hummon AB, Richmond TA, Verleyen P, Baggerman G, Huybrechts J, Ewing MA, Vierstraete E, Rodriguez-Zas SL, Schoofs L, Robinson GE. From the genome to the proteome: uncovering peptides in the Apis brain. Science. 2006. 314: 647-649. https://doi.org/10.1126/science.1124128
  22. Isabel G, Martin JR, Chidami S, Veenstra JA, Rosay P. AKHproducing neuroendocrine cell ablation decreases trehalose and induces behavioral changes in Drosophila. Am J Physiol Regul Integr Comp Physiol. 2005. 288: R531-R538. https://doi.org/10.1152/ajpregu.00158.2004
  23. Karcavich R, Doe CQ. Drosophila neuroblast 7-3 cell lineage: a model system for studying programmed cell death, Notch/Numb signaling, and sequential specification of ganglion mother cell identity. J Comp Neurol. 2005. 481: 240-251. https://doi.org/10.1002/cne.20371
  24. Kim J, Kim JW, Park JH. Characterization and expression of corazonin gene in the scuttle fly, Megaselia scalaris. GenBank. 2013. KF318884.1.
  25. Kimura KI, Truman JW. Postmetamorphic cell death in the nervous and muscular systems of Drosophila melanogaster. J Neurosci. 1990. 10: 403-411. https://doi.org/10.1523/JNEUROSCI.10-02-00403.1990
  26. Lee G, Kim KM, Kikuno K, Wang Z, Choi YJ, Park JH. Developmental regulation and functions of the expression of the neuropeptide corazonin in Drosophila melanogaster. Cell Tissue Res. 2008. 331: 659-673. https://doi.org/10.1007/s00441-007-0549-5
  27. Lee G, Park JH. Hemolymph sugar homeostasis and starvationinduced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics. 2005. 167: 311-323. https://doi.org/10.1534/genetics.167.1.311
  28. Lee G, Wang Z, Sehgal R, Chen CH, Kikuno K, Hay B, Park JH. Drosophila caspases involved in developmentally regulated programmed cell death of peptidergic neurons during early metamorphosis. J Comp Neurol. 2011. 519: 34-48. https://doi.org/10.1002/cne.22498
  29. Lundell MJ, Lee HK, Perez E, Chadwell L. The regulation of apoptosis by Numb/Notch signaling in the serotonin lineage of Drosophila. Development. 2003. 130: 4109-4121. https://doi.org/10.1242/dev.00593
  30. McNabb SL, Baker JD, Agapite J, Steller H, Riddiford LM, Truman JW. Disruption of a behavioral sequence by targeted death of peptidergic neurons in Drosophila. Neuron. 1997. 19: 813-823. https://doi.org/10.1016/s0896-6273(00)80963-0
  31. Menzies FM, Tenisetti SC, Min KT. Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress. Curr Biol. 2005. 15: 1578-1582. https://doi.org/10.1016/j.cub.2005.07.036
  32. Nassel DR. Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Prog Neurobiol. 2002. 68: 1-84. https://doi.org/10.1016/S0301-0082(02)00057-6
  33. Nassel DR, Winther AM. Drosophila neuropeptides in regulation of physiology and behavior. Prog Neurobiol. 2010. 92: 42-104. https://doi.org/10.1016/j.pneurobio.2010.04.010
  34. Neckameyer WS, Weinstein JS. Stress affects dopaminergic signaling pathways in Drosophila melanogaster. Stress. 2005. 9: 117-131. https://doi.org/10.1080/10253890500147381
  35. Novotny T, Eiselt R, Urban J. Hunchback is required for the specification of the early sublineage of neuroblast 7-3 in the Drosophila central nervous system. Development. 2002. 129: 1027-1036. https://doi.org/10.1242/dev.129.4.1027
  36. O'Shea M, Schaffer M. Neuropeptide function: the invertebrate contribution. Annu Rev Neurosci. 1985. 8: 171-198. https://doi.org/10.1146/annurev.ne.08.030185.001131
  37. Park HH. The development stages of scuttle fly. Biomedical Science Letters. 2018. 24: 125-129. https://doi.org/10.15616/BSL.2018.24.2.125
  38. Park HH, Park MS, Na KJ. Development of Central Nervous System in Scuttle Fly. Korean Clin Lab Sci. 2018. 50: 284-288. https://doi.org/10.15324/kjcls.2018.50.3.284
  39. Park Y, Kim YJ, Adams ME. Identification of G protein-coupled receptors for Drosophila PRXamide, CCAP, corazonin, and AKH supports a theory of ligand-receptor coevolution. Proc Natl Acad Sci USA. 2002. 99: 11423-11428. https://doi.org/10.1073/pnas.162276199
  40. Porras MG, De Loof A, Breuer M, Arechiga H. Corazonin promotes tegumentary pigment migration in the crayfish Procambarus clarkii. Peptides. 2003. 24: 1581-1589. https://doi.org/10.1016/j.peptides.2003.08.016
  41. Rauschenbach IY, Serova L, Timochina I, Chentsova NA, Schumnaja L. Analysis of differences in dopamine content between two lines of Drosophila virilis in response to heat stress. J Insect Physiol. 1993. 39: 761-767. https://doi.org/10.1016/0022-1910(93)90051-R
  42. Robinow S, Talbot WS, Hogness DS, Truman JW. Programmed cell death in the Drosophila CNS is ecdysone-regulated and coupled with a specific ecdysone receptor isoform. Development. 1993. 119: 1251-1259. https://doi.org/10.1242/dev.119.4.1251
  43. Roller L, Tanaka S, Kimura K, Satake H, Tanaka Y. Molecular cloning of [Thr4, His7]-corazonin(Apime-corazonin) and its distribution in the central nervous system of the honey bee Apis melifera (Hymenoptera; Apidae). Appl Entomol Zool. 2006. 41: 331-338. https://doi.org/10.1303/aez.2006.331
  44. Roller L, Tanaka Y, Tanaka S. Corazonin and corazonin-like substances in the central nervous system of the Pterygote and Apterygote insects. Cell Tissue Tes. 2003. 312: 393-406. https://doi.org/10.1007/s00441-003-0722-4
  45. Santos JG, Vomel M, Struck R, Homberg U, Nassel DR, Wegener C. Neuroarchitecture of peptidergic systems in the larval ventral ganglion of Drosophila melanogaster. PLoS ONE. 2007. 2: e695. https://doi.org/10.1371/journal.pone.0000695
  46. Sha K, Conner WC, Choi DY, Park JH. Characterization, expression, and evolutionary aspects of Corazonin neuropeptide and its receptor from the House Fly, Musca domestica (Diptera: Muscidae). Gene. 2012. 497: 191-199. https://doi.org/10.1016/j.gene.2012.01.052
  47. Shiga S, Davis NT, Hildebrand JG. Role of neurosecretory cells in the photoperiodic induction of pupal diapause of the tobacco hornworm Manduca sexta. J Comp Neurol. 2003. 462: 275-285. https://doi.org/10.1002/cne.10683
  48. Taghert PH, Veenstra JA. Drosophila neuropeptide signaling. Adv Genet. 2003. 49: 1-65. https://doi.org/10.1016/S0065-2660(03)01001-0
  49. Tanaka S. Endocrine mechanism of controlling body-color polymorphism in locusts. Arch Insect Biochem Physiol. 2001. 47: 139-149. https://doi.org/10.1002/arch.1045
  50. Tanaka S, Zhu DH, Hoste B, Breuer M. The dark-color inducing neuropoptide, His7-corazonin, causes a shift in morphometric characteristics towards the gregarious phase in isolated-reared (solitarious) Locusta migratoria. J. Insect Physiol. 2002a. 48: 1065-1074. https://doi.org/10.1016/S0022-1910(02)00199-3
  51. Tan Y, Yamada-Mabuchi M, Arya R, St Pierre S, Tang W, Tosa M, Brachmann C, White K. Coordinated expression of cell death genes regulates neuroblast apoptosis. Development. 2011. 138: 2197-2206. https://doi.org/10.1242/dev.058826
  52. Tawfik AI, Tanaka S, De Loof A, Schoofs L, Baggerman G, Waelkens E, Derua R, Milner Y, Yerushalmi Y, Pener MP. Identification of the gregarization - associated dark - pigmentotropin in locusts through an albino mutant. Proc Natl Acad Sci U S A. 1999. 96: 7083-7087. https://doi.org/10.1073/pnas.96.12.7083
  53. Tayler TD, Pacheco DA, Hergarden AC, Murthy M, Anderson DJ. A neuropeptide circuit that coordinates sperm transfer and copulation duration in Drosophila. Proc Natl Acad Sci U S A. 2012. 109: 20697-20702. https://doi.org/10.1073/pnas.1218246109
  54. Terhzaz S, Rosay P, Goodwin SF, Veenstra JA. The neuropeptide SIFamide modulates sexual behavior in Drosophila. Biochem Biophys Res Commun. 2007. 352: 305-310. https://doi.org/10.1016/j.bbrc.2006.11.030
  55. Truman JW. Metamorphosis of the central nervous system of Drosophila. J Neurobiol. 1990. 21: 1072-1084. https://doi.org/10.1002/neu.480210711
  56. Veenstra JA. Isolation and structure of corazonin, a cardio-active peptide from the America cockroach. FEBS Lett. 1989. 250: 231-234. https://doi.org/10.1016/0014-5793(89)80727-6
  57. Veenstra JA. Presence of corazonin in three insect species, and isolation and identification of [His7] corazonin from Schistocerca americana. Peptides. 1991. 12: 1285-1289. https://doi.org/10.1016/0196-9781(91)90208-7
  58. Veenstra JA. Does Corazonin signal nutritional stress in insects? Insect Biochem Mol Biol. 2009. 39: 755-762. https://doi.org/10.1016/j.ibmb.2009.09.008
  59. Veenstra JA, Davis NT. Localization of corazonin in the nervous system of the cockroach Periplaneta americana. Cell Tissue Res. 1993. 274: 57-64. https://doi.org/10.1007/BF00327985
  60. Verleyen P, Baggerman G, Mertens I, Vandersmissen T, Huybrechts J, Van Lommel A, De Loof A, Schoofs L. Cloning and characterization of a third isoform of corazonin in the honey bee Apis mellifera. Peptides. 2006. 27: 493-499. https://doi.org/10.1016/j.peptides.2005.03.065
  61. Verleyen P, Huybrechts J, Baggerman G, Van Lommel A, De Loof A, Schoofs L. SIFamide is a highly conserved neuropeptide: a comparative study in different insect species. Biochem Biophys Res Commun. 2004. 320: 334-341. https://doi.org/10.1016/j.bbrc.2004.05.173
  62. Winbush A, Weeks JC. Steroid-triggered, cell-autonomous death of a Drosophila motoneuron during metamorphosis. Neural Dev. 2011. 6: 15. https://doi.org/10.1186/1749-8104-6-15
  63. Yerushalmi YK, Bhargava C, Gilon, Pener MP. Structure-activity relations of the dark-colour-inducing neurohormone of locusts. Insect Biochem Mol Biol. 2002. 32: 909-917. https://doi.org/10.1016/S0965-1748(01)00180-1
  64. Zhao Y, Bretz CA, Hawksworth SA, Hirsh J, Johnson EC. Corazonin neurons function in sexually dimorphic circuitry that shape behavioral responses to stress in Drosophila. PLoS One. 2010. 5: e9141. https://doi.org/10.1371/journal.pone.0009141