DOI QR코드

DOI QR Code

Induction of Apoptosis by Sageretia thea Branch Extracts through Activation of NF-κB Signaling Pathway in Human Colorectal Cancer Cells

상동나무(Sageretia thea) 가지추출물의 대장암세포에서 NF-κB 신호전달 활성화를 통한 세포사멸 유도활성

  • Kim, Jeong Dong (Department of Medicinal Plant Resources, Andong National University) ;
  • Park, Su Bin (Department of Medicinal Plant Resources, Andong National University) ;
  • Eo, Hyun Ji (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Park, Gwang Hun (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Jeong, Jin Boo (Department of Medicinal Plant Resources, Andong National University)
  • 김정동 (국립안동대학교 생약자원학과, 대학원) ;
  • 박수빈 (국립안동대학교 생약자원학과, 대학원) ;
  • 어현지 (국립산림과학원 산림약용자원연구소) ;
  • 박광훈 (국립산림과학원 산림약용자원연구소) ;
  • 정진부 (국립안동대학교 생약자원학과)
  • Received : 2020.07.03
  • Accepted : 2020.07.28
  • Published : 2020.10.01

Abstract

In this study, we evaluated the inhibitory effect against cell growth and potential molecular mechanism of 100% ethanol extracts of branch from Sageretia thea in human colorectal cancer cells, HCT116. Ethanol dose-dependently extracts of STB significantly suppressed the growth of HCT116 cells through apoptosis. STB activated NF-κB signaling pathway through IκB-α proteasomal degradation and inducing p65 accumulation in nucleus. The inhibition of GSK3β by LiCl didn't affect STB mediated degradation IκB-α but STB mediated p65 accumulation in nucleus. In addition, STB phosphorylated GSK3β. Based on these findings, STB may be a potential candidate for the development of anti-cancer agents for human colorectal cancer.

본 연구에서 상동나무 가지 추출물(STB-E100)은 대장암 세포에서 세포사멸을 유도하여 세포생육을 억제하였다. 또한 IκB-α 인산화를 통한 IκB-α 단백질 분해를 유도하며 이로 인해 P65 핵내 전이를 유도하여 NF-κB 신호전달을 활성화시킨다. NF-κB 신호전달 활성화는 GSK3β 활성화를 통해 P65 핵내 전이를 유도에 의한 것이지만 IκB-α분해는 GSK3β 의존성이 아니다. 상동나무 가지 추출물은 이러한 신호전달 활성화를 통해 세포사멸을 유도하여 대장암의 세포생육을 억제한다. 본 결과를 바탕으로 상동나무 가지가 암 예방 및 치료를 목적으로 한 표적 요법에서 항암제 개발의 잠재적 활용 소재로서 이용 가능하다고 사료된다. 그러나 대장암 세포에서 상동나무 가지 추출물에 의해 유도된 NF-κB 신호전달 작용기전을 좀더 구체적으로 구명할 필요가 있고 대장암에 대한 세포사멸과 작용기전의 정확한 관련성을 조사하기 위해 추가적인 연구가 필요하다.

Keywords

References

  1. Arghi, M., I. Soerjomataram, M. Jenkins, J. Brierley, E. Morris, F. Bray and M. Arnold. 2019. Global trends in colorectal cancer mortality: Projections to the year 2035. Int. J. Cancer. 144:2992-3000. https://doi.org/10.1002/ijc.32055
  2. Bi, X., Q. Lin, T.W. Foo, S. Joshi, T. You, H.M. Shen, C.N. Ong, P.Y. Cheah, K.W. Eu and C.L. Hew. 2006. Proteomic analysis of colorectal cancer reveals alterations in metabolic pathways. Mol. Cell. Proteom. 5(6):1119-1130. https://doi.org/10.1074/mcp.M500432-MCP200
  3. Bours, V., M.B. Alj, A.C. Hellin, P. Viatour, P. Robe, S. Delhalle, V. Benoit and M.P. Merville. 2000. Nuclear factor-${\kappa}B$, Cancer, and Apoptosis. Biochem. Pharmacol. 60:1085-1090. https://doi.org/10.1016/S0006-2952(00)00391-9
  4. Bray, F., J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre and A. Jemal. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68:394-424. https://doi.org/10.3322/caac.21492
  5. Cheng, Y.Y., C.H. Hsieh, T.H. Tsai. 2018. Concurrent administration of anticancer chemotherapy drug and herbal medicine on the perspective of pharmacokinetics. J. Food Drug Anal. 26:S88-S95. https://doi.org/10.1016/j.jfda.2018.01.003
  6. Dolcet, X., D. Llobet, J. Pallares and X. Matias-Guiu. 2005. NF-${\kappa}B$ in development and progression of human cancer. Virchows Arch. 446:475-482. https://doi.org/10.1007/s00428-005-1264-9
  7. Hassanzadeh, P. 2011. Colorectal cancer and NF-${\kappa}B$ signaling pathway. Gastroenterol. Hepatol. Bed Bench 4(3):127-132.
  8. Hoeflich, K.P., J. Luo, E.A. Rubie, M.S. Tsao, O. Jin and J.R. Woodgett. 2000. Requirement for glycogen synthase kinase-3 ${\beta}$ in cell survival and NF-${\kappa}B$ activation. Nature 406:86-90. https://doi.org/10.1038/35017574
  9. Hyun, T.K., S.C. Song, C.K. Song and J.S. Kim. 2015. Nutritional and nutraceutical characteristics of Sageretia theezans fruit. J. Food Drug Anal. 23:742-749. https://doi.org/10.1016/j.jfda.2015.04.006
  10. Irmak, Z., O. Tanriverdi, H. Odemis and D.D. Uysal. 2019. Use of complementary and alternative medicine and quality of life of cancer patients who received chemotherapy in Turkey. Complement. Ther. Med. 44:143-150. https://doi.org/10.1016/j.ctim.2019.04.008
  11. Jeong, J.B., X. Yang, R. Clark, J.E. Choi, S.J Baek and S.H. Lee. 2013. A mechanistic study of the proapoptotic effect of tolfenamic acid: involvement of NF-${\kappa}B$ activation. Carcinogenesis 34(10):2350-2360. https://doi.org/10.1093/carcin/bgt224
  12. Jung, K.W., Y.J. Won, H.J. Kong and E.S. Lee. 2018. Cancer statistics in Korea: Incidence, mortality, survival, and prevalence in 2015. Cancer Res. Treat. 50(2):303-316. https://doi.org/10.4143/crt.2018.143
  13. Kim, H.N., G.H. Park, J.D. Kim, S.B. Park, H.J. Eo and J.B. Jeong. 2019a. Effect of the extracts from the leaves and branches of Sageretia thea on ${\beta}$-catenin proteasomal degradation in human colorectal and lung cancer cells. Korean J. Plant Res. 32(2):153-159. https://doi.org/10.7732/KJPR.2019.32.2.153
  14. Kim, H.N., G.H. Park, S.B. Park, J.D. Kim, H.J. Eo, H.J. Son, J.H. Song and J.B. Jeong. 2019b. Extracts from Sageretia thea reduce cell viability through inducing cyclin D1 proteasomal degradation and HO-1 expression in human colorectal cancer cells. BMC Complement. Altern. Med. 19:43. https://doi.org/10.1186/s12906-019-2453-4
  15. Kim, H.N., G.H. Park, S.B. Park, J.D. Kim, H.J. Eo, H.J. Son, J.H. Song and J.B. Jeong. 2019c. Sageretia thea inhibits inflammation through suppression of NF-${\kappa}B$ and MAPK and activation of Nrf2/HO-1 signaling pathways in RAW264.7 cells. Am. J. Chin. Med. 47(2)385-403. https://doi.org/10.1142/S0192415X19500198
  16. Kole, L., B. Giri, S.K. Manna, B. Pal and S. Ghosh. 2011. Biochanin-A, an isoflavone, showed anti-proliferative and anti-inflammatory activities through the inhibition of iNOS expression, p38-MAPK and ATF-2 phosphorylation and blocking NF${\kappa}B$ nuclear translocation. Eur. J. Pharmacol. 653:8-15. https://doi.org/10.1016/j.ejphar.2010.11.026
  17. Lin, Y., L. Bai, W. Chen, and S. Xu. 2010. The NF-${\kappa}B$ activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin. Ther. Targets 14(1):45-55. https://doi.org/10.1517/14728220903431069
  18. Meyerhardt, J.A. and R.J. Mayer. 2005. Systemic therapy for colorectal cancer. N. Engl. J. Med. 352:476-87. https://doi.org/10.1056/NEJMra040958
  19. Moon, S.M., S.A. Lee, J.H. Hong, J.S. Kim, D.K. Kim and C.S. Kim. 2018. Oleamide suppresses inflammatory responses in LPS-induced RAW264.7 murine macrophages and alleviates paw edema in a carrageenan-induced inflammatory rat model. Int. Immunopharmacol. 56:179-185. https://doi.org/10.1016/j.intimp.2018.01.032
  20. Park, S.B., G.H. Park, Y.R. Um, H.N. Kim, H.M. Song, N.H. Kim, H.S. Kim and J.B. Jeong. 2018. Wood-cultivated ginseng exerts anti-inflammatory effect in LPS-stimulated RAW264.7 cells. Int. J. Biol. Macromol. 116:327-334. https://doi.org/10.1016/j.ijbiomac.2018.05.039
  21. Perkins, N.D. and T.D. Gilmore. 2006. Good cop, bad cop: The different faces of NF-${\kappa}B$. Cell Death Differ. 13:759-772. https://doi.org/10.1038/sj.cdd.4401838
  22. Pfeffer, C.M. and A.T.K. Singh. 2018. Apoptosis: A target for anticancer therapy. Int. J. Mol. Sci. 19(2):448. https://doi.org/10.3390/ijms19020448
  23. Wang, H., T.O. Khor, L. Shu, Z. Su, F. Fuentes, J.H. Lee and A.N.T. Kong. 2012. Plants against cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability. Anti-Cancer Agents Med. Chem. 12:1281-1305. https://doi.org/10.2174/187152012803833026
  24. Wyllie, A.H., G.J. Beattie and A.D. Hargreaves. 1981. Chromatin changes in apoptosis. Histochem J. 681-692.
  25. Yaghoubi, N., A. Soltani, K. Ghazvini, S.M. Hassanian and S.I. Hashemy. 2019. PD-1/ PD-L1 blockade as a novel treatment for colorectal cancer. Biomed. Pharmacother. 110:312-318. https://doi.org/10.1016/j.biopha.2018.11.105
  26. Yun, S.I., H.Y. Yoon, S.Y. Jeong and Y.S. Chung. 2009. Glucocorticoid induces apoptosis of osteoblast cells through the activation of glycogen synthase kinase $3{\beta}$. J. Bone Miner. Metab. 27:140-148. https://doi.org/10.1007/s00774-008-0019-5

Cited by

  1. 망개나무 추출물의 NF-κB 및 MAPK 신호전달 억제를 통한 항염증 효과 vol.34, pp.1, 2020, https://doi.org/10.7732/kjpr.2021.34.1.031