DOI QR코드

DOI QR Code

Diet composition of the Korean wild boar Sus scrofa coreanus (Suidae) at Mt. Jeombongsan, Korea

  • Shin, Hyung-Min (Department of Biological Science, Ajou University) ;
  • Kim, Jihee (Department of Biological Science, Ajou University) ;
  • Jin, Seon Deok (Division of Climate & Ecology, National Institute of Ecology) ;
  • Won, Ho-Yeon (Division of Climate & Ecology, National Institute of Ecology) ;
  • Park, Sangkyu (Department of Biological Science, Ajou University)
  • Received : 2020.02.18
  • Accepted : 2020.06.15
  • Published : 2020.09.30

Abstract

Background: Korean wild boars (Sus scrofa coreanus Heude), because of their adaptability, are a widespread large mammal; however, they sometimes cause problems by invading farms and eating the crops, creating insufficiencies of some foods in South Korea. To understand the diet composition of Korean wild boars according to sex and body size, we collected their feces from Mt. Jeombongsan, Seoraksan National Park, South Korea. The sizes of fecal samples were measured, and genomic DNA was extracted from the samples. We amplified specific loci targeting plants (rbcL and trnL) and animals (COI) to detect the food sources of this omnivore and amplified the ZF and SRY regions to determine the sex. Results: In the wild boar feces, Rosaceae and Bryophyte were the most frequently detected plant food sources at the family level and Diptera and Haplotaxida were the most frequently detected animal food sources at the order level. As a result of sex determination, the sex ratio of wild boars collected in the Mt. Jeombongsan area was approximately 1:1. Our result suggested that there is no significant difference between the diet composition of male and female boars. Based on the average cross-sectional area of the feces, the top 25% were classified into the large body size group and the bottom 25% were classified into the small body size group. The large body size group mainly preferred Actinidiaceae, and the small body size group most frequently consumed Fagaceae. The diet of the large body size group was more diverse than the small body size group. Conclusions: Our results showed that the wild boars preferred Rosaceae, especially Sanguisorba and Filipendula, as plant food sources, and Diptera and Coleoptera of Insecta as animal food sources. Based on the results, the dietary preferences of wild boar appear to be distinguished by not their sex but their body size. Our study could help to elucidate the feeding ecology and population structure of wild boar, as well as address conservation and management issues.

Keywords

References

  1. Ballari SA, Cuevas MF, Ojeda RA, Navarro JL. Diet of wild boar (Sus scrofa) in a protected area of Argentina: the importance of baiting. Mammal Res. 2015;60:81-7. https://doi.org/10.1007/s13364-014-0202-0
  2. Barrios-Garcia MN, Ballari SA. Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biol Invasions. 2012;14(11):2283-300. https://doi.org/10.1007/s10530-012-0229-6
  3. Baubet E, Ropert-Coudert Y, Brandt S. Seasonal and annual variations in earthworm consumption by wild boar (Sus scrofa scrofa L.). Wildl Res. 2003;30(2):179-86. https://doi.org/10.1071/WR00113
  4. Baubet E, Bonenfant C, Brandt S. Diet of the wild boar in the French alps. Galemys. 2004;16:101-13.
  5. Calenge C, Maillard D, Fournier P, Fouque C. Efficiency of spreading maize in the garrigues to reduce wild boar (Sus scrofa) damage to Mediterranean vineyards. Eur J Wildl Res. 2004;50(3):112-20. https://doi.org/10.1007/s10344-004-0047-y
  6. Carr CM, Hardy SM, Brown TM, Macdonald TA, Hebert PD. 2011. A trioceanic perspective: DNA barcoding reveals geographic structure and cryptic diversity in Canadian Polychaetes. PLoS One, 2011;6(7):e22232. https://doi.org/10.1371/journal.pone.0022232
  7. Cho IC, Kang SY, Lee SS, Choi YL, Ko MS, Oh MY, Han SH. Molecular sexing using SRY and ZF genes in pigs. J Anim Sci Technol. 2005;47(3):317-24 (in Korean). https://doi.org/10.5187/JAST.2005.47.3.317
  8. Choi TY, Lee YS, Park CH. Home-range of wild boar, Sus scrofa, living in the Jirisan National Park, Korea. J Ecol Environ. 2006;29(3):253-7 (in Korean).
  9. Fonseca C. Winter habitat selection by wild boar Sus scrofa in southeastern Poland. Eur J Wildl Res. 2008;54(2):361-6. https://doi.org/10.1007/s10344-007-0144-9
  10. Han SH, Oh JG, Cho IC, Ko MS, Kim TW, Chang MH, Kim BS, Park SG, Oh HS. A molecular genetic analysis of the introduced wild boar species (Sus scrofa coreanus) on Mount Halla, Jeju Island, Korea. J Ecol Environ. 2011;25(5):658-65 (in Korean).
  11. Herrero J, Garcia-Serrano A, Couto S, Ortuno VM, Garcia-Gonzalez R. 2006. Diet of wild boar Sus scrofa L. and crop damage in an intensive agroecosystem. Eur J Wildl Res 2006;52(4):245-250. https://doi.org/10.1007/s10344-006-0045-3
  12. Kierepka EM, Unger SD, Keiter DA, Beasley JC, Rhodes JROE, Cunningham FL, Piaggio AJ. Identification of robust microsatellite markers for wild pig fecal DNA. J Wildl Manag. 2016;80(6):1120-8. https://doi.org/10.1002/jwmg.21102
  13. Kim Y, Cho S, Choung Y. Habitat preference of wild boar (Sus scrofa) for feeding in cool-temperate forests. J Ecol Environ. 2019;43(1):30. https://doi.org/10.1186/s41610-019-0126-3
  14. KNPRI. Seoraksan National Park Resource Investigation - Jeombongsan. Korea National Park Research Institute: Namwon; 2012. (in Korean).
  15. KNPRI. A survey of the distribution of Sus scrofa in urban national parks. Korea National Park Research Institute: Wonju; 2016. (in Korean).
  16. Kohn MH, Wayne RK. Facts from feces revisited. Trends Ecol Evol. 1997;12(6):223-7. https://doi.org/10.1016/S0169-5347(97)01050-1
  17. Kolodziej K, Theissinger K, Brun J, Schulz HK, Schulz R. Determination of the minimum number of microsatellite markers for individual genotyping in wild boar (Sus scrofa) using a test with close relatives. Eur J Wildl Res. 2012;58(3):621-8. https://doi.org/10.1007/s10344-011-0588-9
  18. Kress WJ, Erickson DL. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One. 2007;2(6):e508. https://doi.org/10.1371/journal.pone.0000508
  19. Lee SM, Lee WS. Diet of the wild boar (Sus scrofa) in Agricultural Land of Geochang, Gyeongnam Province, Korea. Jour Korean For Soc. 2014;103(2):307-12. https://doi.org/10.14578/jkfs.2014.103.2.307
  20. Lee SM, Lee EJ. Diet of the wild boar (Sus scrofa): implications for management in forest-agricultural and urban environments in South Korea. Peer J. 2019;7:e7835. https://doi.org/10.7717/peerj.7835
  21. Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N, Ranwez V, Boehm JT, Machida RJ. A new versatile primer set targeting short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front Zool. 2013;10(1):34. https://doi.org/10.1186/1742-9994-10-34
  22. Morden CJC, Weladjia RB, Ropstad E, Dahl E, Holand O. Use of faecal pellet size to differentiate age classes in female Svalbard reindeer Rangifer tarandus platyrhynchus. Wildl Biol. 2011;17(4):441-8. https://doi.org/10.2981/10-023
  23. Riaz T, Shehzad W, Viari A, Pompanon F, Taberlet P, Coissac E. ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res. 2011;39(21):e145. https://doi.org/10.1093/nar/gkr732
  24. Robeson MS, Khanipov K, Golovko G, Wisely SM, White MD, Bodenchuck M, Smyser TJ, Fofanov Y, Fierer N, Piaggio AJ. Assessing the utility of metabarcoding for diet analyses of the omnivorous wild pig (Sus scrofa). Ecol Evol. 2018;8(1):185-96. https://doi.org/10.1002/ece3.3638
  25. Skogland T. Sex ratio in relation to maternal condition and parental investment in wild reindeer Rangifer t. tarandus. Oikos. 1986;46(3):417-9. https://doi.org/10.2307/3565843
  26. Soininen EM, Valentini A, Coissac E, Miquel C, Gielly L, Brochmann C, Brysting AK, Sonstebo JH, Ims RA, Yoccoz NG, Taberlet P. Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures. Front Zool. 2009;6(1):16. https://doi.org/10.1186/1742-9994-6-16
  27. Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 2007;35(3):e14. https://doi.org/10.1093/nar/gkl938
  28. Valentini A, Pompanon F, Taberlet P. DNA barcoding for ecologists. Trends Ecol Evol. 2008;24(2):110-7. https://doi.org/10.1016/j.tree.2008.09.011
  29. Vestheim H, Jarman SN. Blocking primers to enhance PCR amplification of rare sequences in mixed samples - a case study on prey DNA in Antarctic krill stomachs. Front Zool. 2008;5(1):12. https://doi.org/10.1186/1742-9994-5-12
  30. Welander J. Spatial and temporal dynamics of wild boar (Sus scrofa) rooting in a mosaic landscape. J Zool. 2000;252(2):263-71. https://doi.org/10.1111/j.1469-7998.2000.tb00621.x
  31. Wilcox JT, Vuren DH. Wild pigs as predators in Oak Woodlands of California. J Mammal. 2009;90(1):114-8. https://doi.org/10.1644/08-MAMM-A-017.1
  32. Wirthner S, Schutz M, Page-Dumroese DS, Busse MD, Kirchner JW, Risch AC. Do changes in soil properties after rooting by wild boars (Sus scrofa) affect understory vegetation in Swiss hardwood forests? Can J For Res. 2012;42(3):585-92. https://doi.org/10.1139/x2012-013
  33. Wishart J, Lapidge S, Braysher M, Sarre SD, Hone J. Observations on effects of feral pig (Sus scrofa) age and sex on diet. Wildl Res. 2015;42(6):470-4. https://doi.org/10.1071/WR15044