DOI QR코드

DOI QR Code

Global Regulators to Activate Silent Biosynthetic Gene Clusters

  • Received : 2020.08.07
  • Accepted : 2020.09.04
  • Published : 2020.09.30

Abstract

Genome mining has recently emerged as a powerful strategy to discover novel microbial secondary metabolites. However, more than 50% of biosynthetic gene clusters are not transcribed under standardized laboratory culture condition. Several methods have been applied to activate silent biosynthetic gene clusters in the microbes so far. Among the regulatory systems for production of secondary metabolites, global regulators, which affect transcription of genes through regulatory cascades, typically govern the production of small molecules. In this review, global regulators to affect production of microbial secondary metabolites were discussed.

Keywords

References

  1. Thapa, S. S.; Grove, A. Antibiotics 2019, 8, 160. https://doi.org/10.3390/antibiotics8040160
  2. Gross, H.; Stockwell, V. O.; Henkels, M. D.; Nowak-Thompson, B.; Loper, J. E.; Gerwick, W. H. Chem. Biol. 2007, 14, 53-63. https://doi.org/10.1016/j.chembiol.2006.11.007
  3. Chiang, Y. M.; Chang, S. L.; Oakley, B. R.; Wang, C. C. C. Curr. Opin. Chem. Biol. 2011, 15, 137-143. https://doi.org/10.1016/j.cbpa.2010.10.011
  4. Rutledge, P. J.; Challis, G. L. Nat. Rev. Microbiol. 2015, 13, 509-523. https://doi.org/10.1038/nrmicro3496
  5. Choi, S.-S.; Kim, H.-J.; Lee, H.-S.; Kim, P.; Kim, E.-S. Process Biochem. 2015, 50, 1184-1193. https://doi.org/10.1016/j.procbio.2015.04.008
  6. Chen, Y.; Smanski, M. J.; Shen, B. Appl. Microbiol. Biotechnol. 2010, 86, 19-25. https://doi.org/10.1007/s00253-009-2428-3
  7. Mao, D.; Bushin, L. B.; Moon, K.; Wu, Y.; Seyedsayamdost, M. R. Proc. Natl. Acad. Sci. U S A. 2017, 114, E2920-E2928. https://doi.org/10.1073/pnas.1619529114
  8. Unoarumhi, Y.; Blumenthal, R. M.; Matson, J. S. BMC Evol. Biol. 2016, 16, 111. https://doi.org/10.1186/s12862-016-0685-1
  9. Gottesman, S. Annu. Rev. Genet. 1984, 18, 415-441. https://doi.org/10.1146/annurev.ge.18.120184.002215
  10. Martinez-Antonio, A.; Collado-Vides, J. Curr. Opin. Microbiol. 2003, 6, 482-489. https://doi.org/10.1016/j.mib.2003.09.002
  11. Cheng, A. C.; Currie, B. J. Clin. Microbiol. Rev. 2005, 18, 383-416. https://doi.org/10.1128/CMR.18.2.383-416.2005
  12. Liu, X.; Cheng, Y. Q. J. Ind. Microbiol. Biotechnol. 2014, 41, 275-284. https://doi.org/10.1007/s10295-013-1376-1
  13. Biggins, J. B.; Ternei, M. A.; Brady, S. F. J. Am. Chem. Soc. 2012, 134, 13192-13195. https://doi.org/10.1021/ja3052156
  14. Knappe, T. A.; Linne, U.; Zirah, S.; Rebuffat, S.; Xie, X.; Marahiel, M. A. J. Am. Chem. Soc. 2008, 130, 11446-11454. https://doi.org/10.1021/ja802966g
  15. Majerczyk, C.; Brittnacher, M.; Jacobs, M.; Armour, C. D.; Radey, M.; Schneider, E.; Phattarasokul, S.; Bunt, R.; Greenberg, E. P. J. Bacteriol. 2014, 196, 1412-1424. https://doi.org/10.1128/JB.01405-13
  16. Wang, G.; Huang, X.; Li, S.; Huang, J.; Wei, X.; Li, Y.; Xu, Y. J. Bacteriol. 2012, 194, 2443-2457. https://doi.org/10.1128/JB.00029-12
  17. Xu, G.; Zhao, Y.; Du, L.; Qian , G.; Liu, F. Microb. Biotechnol. 2015, 8, 499-509. https://doi.org/10.1111/1751-7915.12246
  18. Tobias, N. J.; Hein rich, A. K.; Eresmann, H.; Wright, P. R.; Neubacher, N.; Backofen, R.; Bode, H. B. Environ. Microbiol. 2017, 19, 119-129. https://doi.org/10.1111/1462-2920.13502
  19. Sabn is, N. A.; Yan g, H.; Romeo, T. J. Biol. Chem. 1995, 270, 29096-29104. https://doi.org/10.1074/jbc.270.49.29096
  20. Tatarko, M.; Romeo, T. Curr. Microbiol. 2001, 43, 26-32. https://doi.org/10.1007/s002840010255
  21. Draths, K. M.; Pompliano, D. L.; Conley, D. L.; Frost, J. W.; Berry, A.; Disbrow, G. L.; Staversky, R. J.; Lievense, J. C. J. Am. Chem. Soc. 1992, 114, 3956-3962. https://doi.org/10.1021/ja00036a050
  22. Hackl, S.; Bechthold, A. Arch. Pharm. 2015, 348, 455-462. https://doi.org/10.1002/ardp.201500073
  23. Hou, B.; Tao, L.; Zhu, X.; Wu, W.; Guo, M.; Ye, J.; Wu, H.; Zhang, H. Appl. Microbiol. Biotechnol. 2018, 102, 4101-4115. https://doi.org/10.1007/s00253-018-8900-1
  24. Tudzynski, B.; Holter, K. Fungal Genet. Biol. 1998, 25, 157-170. https://doi.org/10.1006/fgbi.1998.1095
  25. Michielse, C. B.; Studt, L.; Janevska, S.; Sieber, C. M. K.; Arndt, B.; Espino, J. J.; Humpf, H. U.; Guldener, U.; Tudzynski, B. Environ. Microbiol. 2015, 17, 2690-2708. https://doi.org/10.1111/1462-2920.12592
  26. Oakley, C. E.; Ahuja, M.; Sun , W. W.; En twistle, R.; Akashi, T.; Yaegashi, J.; Guo, C. J.; Cerqueira, G. C.; Russo Wortman, J.; Wang, C. C. C.; Chiang, Y. M.; Oakley, B. R. Mol. Microbiol. 2017, 103, 347-365. https://doi.org/10.1111/mmi.13562
  27. Palmer, J. M.; Theisen , J. M.; Duran , R. M.; Grayburn , W. S.; Calvo, A. M.; Keller, N. P. PLoS Genet. 2013, 9, e1003193. https://doi.org/10.1371/journal.pgen.1003193
  28. Grau, M. F.; Entwistle, R.; Oakley, C. E.; Wang, C. C. C.; Oakley, B. R. ACS Chem. Biol. 2019, 14, 1643-1651. https://doi.org/10.1021/acschembio.9b00380
  29. Manderville, R. A. Curr. Med. Chem. Anticancer Agents 2001, 1, 195-218. https://doi.org/10.2174/1568011013354688
  30. Perez-Tomas, R.; Montaner, B.; Llagostera, E.; Soto-Cerrato, V. Biochem. Pharmacol. 2003, 66, 1447-1452. https://doi.org/10.1016/S0006-2952(03)00496-9
  31. Coulthurst, S. J.; Barnard, A. M. L.; Salmond, G. P. C. Nat. Rev. Microbiol. 2005, 3, 295-306. https://doi.org/10.1038/nrmicro1128
  32. Fineran, P. C.; Slater, H.; Everson, L.; Hughes, K.; Salmond, G. P. C. Mol. Microbiol. 2005, 56, 1495-1517. https://doi.org/10.1111/j.1365-2958.2005.04660.x
  33. Slater, H.; Crow, M.; Everson , L.; Salmon d, G. P. C. Mol. Microbiol. 2003, 47, 303-320. https://doi.org/10.1046/j.1365-2958.2003.03295.x
  34. Fineran, P. C.; Everson, L.; Slater, H.; Salmond, G. P. C. Microbiology 2005, 151, 3833-3845. https://doi.org/10.1099/mic.0.28251-0
  35. Lapouge, K.; Schubert, M.; Allain, F. H. T.; Haas, D. Mol. Microbiol. 2008, 67, 241-253. https://doi.org/10.1111/j.1365-2958.2007.06042.x
  36. Vakulskas, C. A.; Potts, A. H.; Babitzke, P.; Ahmer, B. M. M.; Romeo, T. Microbiol. Mol. Biol. Rev. 2015, 79, 193-224. https://doi.org/10.1128/MMBR.00052-14
  37. Kay, E.; Dubuis, C.; Haas, D. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 17136-17141. https://doi.org/10.1073/pnas.0505673102
  38. Brencic, A.; McFarland, K. A.; McManus, H. R.; Castang, S.; Mogno, I.; Dove, S. L.; Lory, S. Mol. Microbiol. 2009, 73, 434-445. https://doi.org/10.1111/j.1365-2958.2009.06782.x
  39. Lapouge, K.; Perozzo, R.; Iwaszkiewicz, J.; Bertelli, C.; Zoete, V.; Michielin, O.; Scapozza, L.; Haas, D. RNA Biol. 2013, 10, 1030-1041. https://doi.org/10.4161/rna.24771
  40. Jahanshah, G.; Yan, Q.; Gerhardt, H.; Pataj, Z.; Lammerhofer, M.; Pianet, I.; Josten, M.; Sahl, H. G.; Silby, M. W.; Loper, J. E.; Gross, H. J. Nat. Prod. 2019, 82, 301-308. https://doi.org/10.1021/acs.jnatprod.8b00747
  41. Kim, J. N.; Jeong, Y.; Yoo, J. S.; Roe, J. H.; Cho, B. K.; Kim, B. G. BMC Genomics 2015, 16, 116. https://doi.org/10.1186/s12864-015-1311-0
  42. Yang, Y. H.; Song, E.; Kim, E. J.; Lee, K.; Kim, W. S.; Park, S. S.; Hahn, J. S.; Kim, B. G. Appl. Microbiol. Biotechnol. 2009, 82, 501-511. https://doi.org/10.1007/s00253-008-1802-x
  43. Santamarta, I.; Lopez-Garcia, M. T.; Perez-Redondo, R.; Koekman, B.; Martin, J. F.; Liras, P. Mol. Microbiol. 2007, 66, 511-524. https://doi.org/10.1111/j.1365-2958.2007.05937.x
  44. Hou, J.; Liu, J.; Yang, L.; Liu, Z.; Li, H.; Che, Q.; Zhu, T.; Li, D.; Li, W. Mar. Drugs 2018, 17, 12. https://doi.org/10.3390/md17010012
  45. Keller, N.; Bok, J.; Chung, D.; Perrin, R. M.; Shwab, E. K. Med. Mycol. 2006, 44, S83-S85. https://doi.org/10.1080/13693780600835773
  46. Lopez-Berges, M. S.; Hera, C.; Sulyok, M.; Schafer, K.; Capilla, J.; Guarro, J.; Di Pietro, A. Mol. Microbiol. 2013, 87, 49-65. https://doi.org/10.1111/mmi.12082
  47. Hong, E. J.; Kim, N. K.; Lee, D.; Kim, W. G.; Lee, I. Fungal Biol. 2015, 119, 973-983. https://doi.org/10.1016/j.funbio.2015.06.006