DOI QR코드

DOI QR Code

Development of an Efficient Bioassay Method for Testing Resistance to Bacterial Soft Rot of Chinese Cabbage

효율적인 배추 무름병 저항성 검정법 개발

  • Lee, Soo Min (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology) ;
  • Choi, Yong Ho (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology) ;
  • Kim, Hun (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology) ;
  • Kim, Heung Tae (Department of Plant Medicine, Chungbuk National University) ;
  • Choi, Gyung Ja (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
  • 이수민 (한국화학연구원 친환경신물질연구센터) ;
  • 최용호 (한국화학연구원 친환경신물질연구센터) ;
  • 김헌 (한국화학연구원 친환경신물질연구센터) ;
  • 김흥태 (충북대학교 식물의학과) ;
  • 최경자 (한국화학연구원 친환경신물질연구센터)
  • Received : 2020.08.14
  • Accepted : 2020.09.04
  • Published : 2020.09.30

Abstract

Pectobacterium carotovorum subsp. carotovorum (Pcc) causes bacterial soft rot on a wide range of crops worldwide, especially in countries with warm and humid climates. This study was conducted to establish an efficient screening method for resistant cultivars of Chinese cabbage to bacterial soft rot. Resistance degrees of 65 commercial Chinese cabbage cultivars to the Pcc KACC 10225 isolate were investigated. For further study, three Chinse cabbage cultivars (Taebong, Hadaejangkun, CR Alchan) showing different level of resistance to the bacterium were selected. The development of bacterial soft rot on the cultivars was tested according to several conditions such as growth stage of Chinse cabbage seedling, inoculum concentration, and incubation temperature after inoculation. On the basis of the results, we suggest that an efficient screening method for resistant Chinses cabbage to Pcc is to inoculate twenty one-day-old seedlings with a bacterial suspension of Pcc at a concentration of 1×107 cfu/ml, and to incubate the plants in a dew chamber at 25℃ for 24 hr and then to cultivate in a growth room at 25℃ and 80% relative humidity with 12-hr light per day.

Pactobacterium carotovorum subsp. carotovorum (Pcc)에 의한 무름병은 전세계적으로 문제가 되고 있고 특히 온난 다습한 지역에서 문제가 심각하다. 본 연구는 Pcc에 의해 발생하는 배추 무름병에 대한 효율적인 저항성 검정법을 확립하기 위하여 실험하였다. 시판 배추 품종 65개의 Pcc KACC 10225에 대한 저항성 정도를 조사하고, 추후 실험을 위해 저항성에 차이를 보이는 3개 품종을 선발하였다. 이들 3개 품종의 접종하는 배추의 생육 시기, 접종원 농도, 접종 후 재배 온도 등의 발병 조건에 따른 무름병 발생을 조사하였다. 이들 실험의 결과로부터 배추의 무름병에 대한 저항성을 검정하기 위해서는, 배추 종자를 파종하고 온실(25±5℃)에서 21일 동안 재배한 유묘에 Pcc 균주의 세균현탁액(1×107 cfu/ml)을 식물체 기부에 5 ml씩 관주하여 접종하고, 접종한 식물은 25℃ 습실상에 24시간 동안 배양한 후에 25℃, 상대습도 80%의 생육상으로 이동하여 재배하는 것을 제안하고자 한다.

Keywords

References

  1. Aleck, J. R. and Harrison, M. D. 1978. The influence of inoculum density and environment on the development of potato blackleg. Am. Potato J. 55: 479-494. https://doi.org/10.1007/BF02852154
  2. Barksdale, T. H., Papavizas, G. C. and Johnston, S. A. 1984. Resistance to foliar blight and crown rot of pepper caused by Phytophthora capsici. Plant Dis. 68: 506-509. https://doi.org/10.1094/PD-68-506
  3. Chung, E.-K., Zhang, X.-Z., Choi, B.-R., Lee, E.-J., Yeoung, Y.-R. and Kim, B.-S. 2003. Screening of disease resistance of Chinese cabbage cultivars and lines to bacterial soft rot. Res. Plant Dis. 9: 39-41. (In Korean) https://doi.org/10.5423/RPD.2003.9.1.039
  4. Collmer, A. and Keen, N. T. 1986. The role of pectic enzymes in plant pathogenesis. Ann. Rev. Phytopathol. 24: 383-409. https://doi.org/10.1146/annurev.py.24.090186.002123
  5. Colyer, P. D. and Mount, M. S. 1984. Bacterization of potatoes with Pseudomonas putida and its influence on postharvest soft rot diseases. Plant Dis. 68: 703-706. https://doi.org/10.1094/PD-69-703
  6. De Boer, S. H. and Kelman, A. 1978. Influence of oxygen concentration and storage factors on susceptibility of potato tubers to bacterial soft rot (Erwinia carotovora). Potato Res. 21: 65-79. https://doi.org/10.1007/BF02362262
  7. Doullah, M. A. U., Meah, M. B. and Okazaki, K. 2006. Development of an effective screening method for partial resistance to Alternaria brassicicola (dark leaf spot) in Brassica rapa. Eur. J. Plant Pathol. 116: 33-43. https://doi.org/10.1007/s10658-006-9035-2
  8. Eriksson, A. R. B., Andersson, R. A., Pirhonen, M. and Palva, E. T. 1998. Two-component regulators involved in the global control of virulence in Erwinia carotovora subsp. carotovora. Mol. Plant-Microbe Interact. 11: 743-752. https://doi.org/10.1094/MPMI.1998.11.8.743
  9. Fox, R. T. V., Manners, J. G. and Myers, A. 1971. Ultrastructure of entry and spread of Erwinia carotovora var. atroseptica into potato tubers. Potato Res. 14: 61-73. https://doi.org/10.1007/BF02355930
  10. Fritz, V. A. and Honma, S. 1987. The effect of raised beds, population densities, and planting date on the incidence of bacterial in Chinese cabbage. J. Am. Soc. Hortic. Sci. 112: 41-44.
  11. Geels, F. P. and Schippers, B. 1983. Selection of antagonistic fluorescent Pseudomonas spp. and their root colonization and persistence following treatment of seed potatoes. J. Phytopathol. 108: 193-206. https://doi.org/10.1111/j.1439-0434.1983.tb00579.x
  12. Hwang, S. M., Jang K. S., Choi, Y. H., Kim, H. and Choi, G. J. 2017. Development of an efficient bioassay method to evaluate resistance of chili pepper cultivars to Ralstonia solanacearum. Res. Plant Dis. 23: 334-347. (In Korean) https://doi.org/10.5423/RPD.2017.23.4.334
  13. Jee, S., Malhotra, S., Roh, E., Jung, K., Lee, D., Choi, J. et al. 2012. Isolation of bacteriophages which can infect Pectobacterium carotovorum subsp. carotovorum. Res. Plant Dis. 18: 225-230. (In Korean) https://doi.org/10.5423/RPD.2012.18.3.225
  14. Jeger, M. J. and Viljanen-Rollinson, S. L. H. 2001. The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theor. Appl. Genet. 102: 32-40. https://doi.org/10.1007/s001220051615
  15. Jo, E. J., Jang, K. S., Choi, Y. H., Ahn, K. G. and Choi, G. J. 2016. Resistance of cabbage plants to isolates of Plasmodiophora brassicae. Korean J. Hortic. Sci. Technol. 34: 442-452. (In Korean)
  16. Jo, S.-J. Shim, S.-A., Jang, K. S., Choi, Y. H., Kim, J.-C. and Choi, G. J. 2014. Resistance of chili pepper cultivars to isolates of Phytophthora capsici. Korean J. Hortic. Sci. Technol. 32: 66-76. (In Korean) https://doi.org/10.7235/hort.2014.13079
  17. Jones, S., Yu, B., Bainton, N. J., Birdsall, M., Bycroft, B. W., Chhabra, S. R. et al. 1993. The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. EMBO J. 12: 2477-2482. https://doi.org/10.1002/j.1460-2075.1993.tb05902.x
  18. Kotoujansky, A. 1987. Molecular genetics of pathogenesis by softrot Erwinias. Annu. Rev. Phytopathol. 25: 405-430. https://doi.org/10.1146/annurev.py.25.090187.002201
  19. Kim, H., Jo, E. J., Choi, Y. H., Jang, K. S. and Choi, G. J. 2016. Pathotype classification of Plasmodiophora brassicae isolates using clubroot-resistant cultivar of Chinese cabbage. Plant Pathol. J. 32: 423-430. https://doi.org/10.5423/PPJ.OA.04.2016.0081
  20. Kim, Y. J., Hwang, B. K. and Park, K. W. 1989. Expression of agerelated resistance in pepper plants infected with Phytophthora capsici. Plant Dis. 73: 745-747. https://doi.org/10.1094/PD-73-0745
  21. Korean Society of Plant Pathology. 2009. Vegetables. In: List of Plant Disease in Korea. 5th ed., eds. by W.-G. Kim and H. M. Koo, pp. 99-103. Korean Society of Plant Pathology, Suwon, Korea. (In Korean)
  22. Lee, J. H., Lee, J. and Oh, D.-G. 2018a. Resistance of pepper cultivars to Ralstonia solanacearum isolates from major cultivated areas of chili peppers in Korea. Hortic. Sci. Technol. 36: 569-576. (In Korean) https://doi.org/10.7235/HORT.20180057
  23. Lee, S. M., Choi, Y. H., Jang, K. S., Kim H., Lee, S.-W. and Choi, G. J. 2018b. Development of an efficient bioassay method for testing resistance to bacterial soft rot of radish. Res. Plant Dis. 24: 193-201. (In Korean) https://doi.org/10.5423/RPD.2018.24.3.193
  24. Lee, W. J., Lee, J. H., Jang, K. S., Choi, Y. H., Kim, H. T. and Choi, G. J. 2015. Development of efficient screening methods for melon plants resistant to Fusarium oxysporum f. sp. melonis. Korean J. Hortic. Sci. Technol. 33: 70-82. (In Korean) https://doi.org/10.7235/hort.2015.14101
  25. Lefebvre, V. and Palloix, A. 1996. Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease: a case study, the interaction pepper-Phytophthora capsici Leonian. Theor. Appl. Genet. 93: 503-511. https://doi.org/10.1007/bf00417941
  26. Lefebvre, V., Pflieger, S., Thabuis, A., Caranta, C., Blattes, A., Chauvet, J.-C. et al. 2002. Towards the saturation the pepper linkage map by alignment of three intraspecific maps including knownfunction genes. Genome 45: 839-845. https://doi.org/10.1139/g02-053
  27. Madden, L. V., Hughes, G. and van den Bosch, F. 2007. The Study of Plant Disease Epidemics. APS Press, St. Paul, MN, USA. 421 pp.
  28. Peombelon, M. C. M., Gullings-Handley, J. and Kelman, A. 1979. Population dynamics of Erwinia carotovora and pectolytic Clostridium spp. in relation to decay of potatoes. Phytopathology 69: 167-173. https://doi.org/10.1094/Phyto-69-167
  29. Pirhonen, M., Flego, D., Heikinheimo, R. and Palva, E. T. 1993. A small diffusible signal molecules is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J. 12: 2467-2476. https://doi.org/10.1002/j.1460-2075.1993.tb05901.x
  30. Raju, M. R. B., Pal, V. and Jalali, I. 2006. Antagonistic rhizospheric bacteria for management of bacterial soft rot of radish seed crop. Ann. Plant Prot. Sci. 14: 393-395.
  31. Raju, M. R. B., Pal, V. and Jalali, I. 2008. Inoculation method of Pectobacterium carotovorum subsp. carotovorum and factors influencing development of bacterial soft rot in radish. J. Mycol. Plant Pathol. 38: 311-315.
  32. Ren, J., Petzoldt, R. and Dickson, M. H. 2001. Screening and identification of resistance to bacterial soft rot in Brassica rapa. Euphytica 118: 271-280. https://doi.org/10.1023/a:1017522501229
  33. Rimmer, S. R. 2007. Bacterial soft rot. In: Compendium of Brassica Disease, eds. by S. R. Rimmer, V. I. Shattuck and L. Buchwaldt, pp. 59-60. APS Press, St. Paul, MN, USA.
  34. Risser, G., Banihashemi, Z. and Davis, D. W. 1976. A proposed nomenclature of Fusarium oxysporum f. sp. melonis races and resistance genes in Cucumis melo. Phytopathology 66: 1105-1106. https://doi.org/10.1094/Phyto-66-1105
  35. Taylor, J. D., Conway, J., Roberts, S. J., Astley, D. and Vincente, J. G. 2002. Sources and origin of resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology 92: 105-111. https://doi.org/10.1094/PHYTO.2002.92.1.105
  36. Thabuis, A., Lefebvre, V., Bernard, G., Daubeze, A. M., Phaly, T., Pochard, E. et al. 2004. Phenotypic and molecular evaluation of a recurrent selection program for a polygenic resistance to Phytophthora capsici in pepper. Theor. Appl. Genet. 109: 342-351. https://doi.org/10.1007/s00122-004-1633-9
  37. Thabuis, A., Palloix, A., Pflieger, S., Daubeze, A.-M., Caranta, C. and Lefebvre, V. 2003. Comparative mapping of Phytophthora resistance loci in pepper germplasm: evidence for conserved resistance loci across Solanaceae and for a large genetic diversity. Theor. Appl. Genet. 106: 1473-1485. https://doi.org/10.1007/s00122-003-1206-3
  38. Williams, P. H. 1981. Workshop on Screening Crucifers for Multiple Disease Resistance. University of Wisconsin, Medison, WI, USA. 105 pp.
  39. Zhao, Y., Li, P., Huang, K., Wang, Y., Hu, H. and Sun, Y. 2013. Control of postharvest soft rot caused by Erwinia carotovora of vegetables by a strain of Bacillus amyloliquefaciens and its potential mode of action. World J. Microbiol. Biotechnol. 29: 411-420. https://doi.org/10.1007/s11274-012-1193-0