DOI QR코드

DOI QR Code

시뮬레이션 모델기반 국방체계 설계를 위한 역방향 시뮬레이션

A Reverse Simulation for Developing Defense Systems based on Simulation Models

  • 투고 : 2020.07.27
  • 심사 : 2020.08.13
  • 발행 : 2020.09.30

초록

시뮬레이션 모델을 통해 가상 전장에서 국방체계의 효과도를 분석하는 것을 순방향 시뮬레이션이라고 할 때, 높은 효과도를 가지는 국방체계를 설계하기 위해서는 역방향 시뮬레이션이 요구된다. 즉 효과도 분석 모델을 바탕으로 높은 효과도를 달성하기 위한 군사 장비들의 제원 및 성능, 그리고 운용 전술을 역으로 도출해야 한다. 하지만 역모델을 도출할 수 없는 시뮬레이션 모델의 특성상 역방향 시뮬레이션은 많은 순방향 시뮬레이션 반복을 요구하므로 효율성의 문제를 초래한다. 본 논문에서는 반복 횟수를 줄임으로 역방향 시뮬레이션을 효율적으로 수행하기 위한 다양한 알고리즘을 제시하고, 실무자가 이들을 손쉽게 활용하기 위한 역방향 시뮬레이션 도구를 소개한다. 실무자는 본 도구를 바탕으로 다양한 역방향 시뮬레이션 알고리즘을 활용하여 국방체계 설계를 위한 역방향 시뮬레이션을 손쉽게, 또 효율적으로 수행할 수 있다. 전함의 방어 시스템 설계와 군사 네트워크 시스템 설계에 대한 사례 연구는 이를 입증한다.

When analyzing the effectiveness of a defense system in a virtual battlefield with a simulation model is referred to as forward simulation, reverse simulation is required to design a good defense system with high effectiveness. That is, using the simulation model, it is necessary to find the engineering factors, measures of performance, and operational tactics that are demanded to achieve high effectiveness of the system. However, the efficiency of reverse simulation is still a concern since many replications of forward simulation are required for conducting reverse simulation. In this paper, we introduce various efficient algorithms to reduce the number of replications and a reverse simulation tool for utilizing these algorithms easily. The tool allows practitioners to easily and efficiently conduct reverse simulation for design a good defense system based on simulation models. This is demonstrated with the case studies on the design of warship's defense system and the design of military network system.

키워드

참고문헌

  1. Andrad'ottir, S. and S.-H. Kim (2010) "Fully sequential procedures for comparing constrained systems via simulation", Naval Research Logistics, 57(5), 403-421. https://doi.org/10.1002/nav.20408
  2. Batur, D. and S.-H, Kim (2005) "Procedures for feasibility detection in the presence of multiple constraints", Proceedings of the 2005 Winter Simulation Conference, Orlando, FL, USA.
  3. Beirlant, J., E. J. Dudewicz, and E. C. van der Meulen (1982) "Complete statistical ranking of populations with tables and applications", Journal of Computational and Applied Mathematics, 8(3), 187-201. https://doi.org/10.1016/0771-050X(82)90041-9
  4. Branke, J., S. E. Chick, and C. Schmidt (2007) "Selecting a selection procedure", Management Science, 53(12), 1916-1932. https://doi.org/10.1287/mnsc.1070.0721
  5. Butler, J., D. J. Morrice, and P. W. Mullarkey (2001) "A multiple attribute utility theory approach to ranking and selection", Management Science, 47(6), 800-816. https://doi.org/10.1287/mnsc.47.6.800.9812
  6. Chen, C.-H. and L. H. Lee (2011) Stochastic Simulation Optimization: An Optimal Computing Budget Allocation, World Scientific, Singapore.
  7. Chen, C.-H., J. Lin, E. Yücesan, and S. E. Chick (2000) "Simulation budget allocation for further enhancing the efficiency of ordinal optimization", Discrete Event Dynamin Systems: Theory and Applications, 10(3), 251-270. https://doi.org/10.1023/A:1008349927281
  8. Chen, C.-H., D. He, M. Fu, and L. H. Lee (2008) "Efficient simulation budget allocation for selecting an optimal subset", INFORMS Journal on Computing, 20(4), 579-595. https://doi.org/10.1287/ijoc.1080.0268
  9. Chick, S. E. and K. Inoue (2001) "New two-stage and sequential procedures for selecting the best simulated system", Operations Research, 49(5), 732-743. https://doi.org/10.1287/opre.49.5.732.10615
  10. Choi, S. H. and C.-B. Choi (2020) "A simulation budget allocation procedure for finding both extreme designs simultaneously in discrete-event simulatio", IEEE Access, 8, 93978-93986. https://doi.org/10.1109/access.2020.2995196
  11. Choi, S. H. and T. G. Kim (2018a) "Optimal subset selection of stochastic model using statistical hypothesis test", IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(4), 557-564. https://doi.org/10.1109/tsmc.2016.2608982
  12. Choi, S. H. and T. G. Kim (2018b) "Pareto set selection for multiobjective stochastic simulation model", IEEE Transactions on Systems, Man, and Cybernetics: Systems, doi: 10.1109/TSMC.2018.2846680.
  13. Choi, S. H. and T. G. Kim (2018c) "Efficient ranking and selection for stochastic simulation model based on hypothesis test", IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(9), 1555-1565. https://doi.org/10.1109/tsmc.2017.2679192
  14. Choi, S. H. and T. G. Kim (2018d) "A heuristic approach for selecting best-subset including ranking within the subset", IEEE Transactions on Systems, Man, and Cybernetics: Systems, doi: 10.1109/TSMC.2018.2870408.
  15. Choi, S. H., K.-M. Seo, and T. G. Kim (2017) "Accelerated simulation of discrete event dynamic systems via a multi-fidelity modeling framework", Applied Sciences, 7(10):1056. https://doi.org/10.3390/app7101056
  16. Choi, S. H., B. G. Kang, and T. G. Kim (2019a) "A heuristic procedure for selecting the feasible best design in the presence of stochastic constraints", IEEE Transactions on Systems, Man, and Cybernetics: Systems, doi: 10.1109/TSMC.2019.2894523.
  17. Choi, S. H., C.-B. Choi, and T. G. Kim (2019b) "An improved budget allocation procedure for selecting the best-simulated design in the presence of large stochastic noise", IEEE Access, 7, 154435-154446. https://doi.org/10.1109/access.2019.2948980
  18. Eberhart, R. and J. Kennedy (1995) "A new optimizer using particle swarm theory", Proceedings of the Sixth International Symposium on Micro Machine and Human Science (MHS '95), Nagoya, Japan, 39-43.
  19. Frazier, P. I. and A. M. Kazachkov (2011) "Guessing preferences: a new approach to multi-attribute ranking and selection", Proceedings of the 2011 Winter Simulation Conference, Phoenix, AZ, USA, 4319-4331.
  20. Gao S. and W. Chen (2015) "Efficient subset selection for the expected opportunity cost", Automatica, 59, 19-26. https://doi.org/10.1016/j.automatica.2015.06.005
  21. Holland, J. H. (1975) Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI, USA.
  22. Hong, J. H. and T. G. Kim (2010) "Interoperation between engineering- and engagement-level models for system effectiveness analysis", Journal of the Korea Society for Simulation, 19(4), 319-326.
  23. Hong, J. H., K.-M. Seo, and T. G. Kim (2015) "Reverse simulation software architecture for required performance analysis of defense system", The Journal of Korean Institute of Communications and Information Sciences, 40(4), 750-759. https://doi.org/10.7840/kics.2015.40.4.750
  24. IEEE Computer Society (2010) IEEE standard for modeling and simulation (M&S) High level architecture (HLA) - framework and rules, IEEE Standard 1516-2010.
  25. Jia, Q. S. (2012) "Efficient computing budget allocation for simulation-based policy improvement", IEEE Transactions on Automation Science and Engineering, 9(2), 342-352. https://doi.org/10.1109/TASE.2011.2181164
  26. Kang, B. G. and T. G. Kim (2018) "Method for analysis of C3 systems of systems using transformation of federation based on an extended DEVS formalism", Journal of the Korea Society for Simulation, 27(3), 13-21. https://doi.org/10.9709/JKSS.2018.27.3.013
  27. Kang, B. G., K.-M. Seo, and T. G. Kim (2019) "Machine learning-based discrete event dynamic surrogate model of communication systems for simulating the command, control, and communication system of systems", Simulation: Transactions of the Society for Modeling and Simulation International, 95(8), 673-691. https://doi.org/10.1177/0037549718809890
  28. Kim, T. G. (2007) "Modeling and simulation engineering", Communication of the Korea Information Science Society, 25(11), 5-15.
  29. Kim, T. G. (2015) "Development of reverse simulation engine for extraction of engineering specification and tactics of weapon systems from given effectiveness", KAIST.
  30. Kim, T. G. (2018a) Defense Modeling and Simulation, Hanteemedia, Seoul, South Korea.
  31. Kim, T.-Y. (2018b) "Simulation reconfiguration using entity plug-in approach for weapon system effectiveness anaylsis", Journal of the Korea Society for Simulation, 27(2), 49-59. https://doi.org/10.9709/JKSS.2018.27.2.049
  32. Kim, S.-H. and B. L. Nelson (2001) "A fully sequential procedure for indifference-zone selection in simulation", ACM Transactions on Modeling and Computer Simulation, 11(3), 251-273. https://doi.org/10.1145/502109.502111
  33. Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983) "Optimization by simulated annealing", Science, 220(4598), 671-680. https://doi.org/10.1126/science.220.4598.671
  34. Lee, L. H., E. P. Chew, S. Teng, and D. Goldsman (2010a) "Finding the nondominated Pareto set for multi-objective simulation models", IIE Transactions, 42(9), 656-674. https://doi.org/10.1080/07408171003705367
  35. Lee L. H., E. P. Chew, and S. Teng (2010b) "Computing budget allocation rules for multi-objective simulation models based on different measures of selection quality", Automatica, 46(12), 1935-1950. https://doi.org/10.1016/j.automatica.2010.08.004
  36. Lee, L. H., N. A. Pujowidianto, L.-W. Li, C.-H. Chen, and C. M. Yap (2012) "Approximate simulation budget allocation for selecting the best design in the presence of stochastic constraints", IEEE Transactions on Automatic Control, 57(11), 2940-2945. https://doi.org/10.1109/TAC.2012.2195931
  37. Lee, W.-B., J.-H. Kim, and T. G. Kim (2006) "War game simulation using parametirc behavior modeling method", Journal of the Korea Contents Association, 6(11), 126-134.
  38. Li, J., W. Liu, G. Pedrielli, L. H. Lee, and E. P. Chew (2018) "Optimal computing budget allocation to select the nondominated systems A large deviations perspective", IEEE Transactions on Automatic Control, 63(9), 2913-2927. https://doi.org/10.1109/tac.2017.2779603
  39. Seo, K.-M., H. S. Song, S. J. Kwon, and T. G. Kim (2011) "Measurement of effectiveness for an antitorpedo combat system using a discrete event systems specification-based underwater warfare simulator", The Journal of Defense Modeling and Simulation, 8(3), 157-171. https://doi.org/10.1177/1548512910390245
  40. Shortle, J. F., C. H. Chen, B. Crain, A. Brodsky, and D. Brod (2012) "Optimal splitting for rare-event simulation", IIE Transactions, 44(5), 352-367. https://doi.org/10.1080/0740817X.2011.596507
  41. Teng, S., L. H. Lee, and E. P. Chew (2010) "Integration of indifference-zone with multi-objective computing budget allocation", European Journal of Operational Research, 203(2), 419-429. https://doi.org/10.1016/j.ejor.2009.08.008
  42. Wang, Y., L. Luangkesorn, and L. J. Shuman (2011) "Best-subset selection procedure", Proceedings of the 2011 Winter Simulation Conference, Phoenix, AZ, USA, 4310-4318.
  43. Xiao, H. and S. Gao (2018) "Simulation budget allocation for selecting the top-m designs with input uncertainty", IEEE Transactions on Automatic Control, 63(9), 3127-3134. https://doi.org/10.1109/tac.2018.2791425
  44. Xiao, H. and L. H. Lee (2014) "Simulation optimization using genetic algorithms with optimal computing budget allocation", Simulation: Transactions of the Society for Modeling and Simulation International, 90(10), 1146-1157. https://doi.org/10.1177/0037549714548095
  45. Xiao, H., L. H. Lee, and K. M. Ng (2014) "Optimal computing budget allocation for complete ranking", IEEE Transactions on Automation Science and Engineering, 11(2), 516-524. https://doi.org/10.1109/TASE.2013.2239289
  46. Xiao, H., S. Gao, and L. H. Lee (2017) "Simulation budget allocation for simultaneously selecting the best and worst subsets", Automatica, 84, 117-127. https://doi.org/10.1016/j.automatica.2017.07.006
  47. Xiao, H., H. Chen, and L. H. Lee (2019) "An efficient simulation procedure for ranking the top simulated designs in the presence of stochastic constraints", Automatica, 103, 106-115. https://doi.org/10.1016/j.automatica.2018.12.008
  48. Xiao, H., F. Gao, and L. H. Lee (2019b) "Optimal computing budget allocation for complete ranking with input uncertainty", IISE Transactions, 52(5), 489-499. https://doi.org/10.1080/24725854.2019.1659524
  49. Xu, J., E. Huang, C.-H. Chen, and L. H. Lee (2015) "Simulation optimization: A review and exploration in the new era of cloud computing and big data", Asia-Pacific Journal of Operational Research, 32(3):1550019. https://doi.org/10.1142/S0217595915500190
  50. Xu, J., E. Huang, L. Hsieh, L.-H. Lee, and C.-H. Chen (2016) "Simulation optimization in the era of industrial 4.0 and industrial Internet", Journal of Simulation, 10(4), 310-320. https://doi.org/10.1057/s41273-016-0037-6
  51. Zhang, S., L. H. Lee, E. P. Chew, J. Xu, and C.-H. Chen (2016a) "A simulation budget allocation procedure for enhancing the efficiency of optimal subset selection", IEEE Transactions on Automatic Control, 61(1), 62-75. https://doi.org/10.1109/TAC.2015.2423832
  52. Zhang, J., C. Wang, D. Zang, and M. Zhou (2016b) "Incorporation of optimal computing budget allocation for ordinal optimization into learning automata", IEEE Transactions on Automation Science and Engineering, 13(2), 1008-1017. https://doi.org/10.1109/TASE.2015.2450535
  53. Zhang, J., Z. Li, C.Wang, D. Zang, and M. Zhou (2017a) "Approximate simulation budget allocation for subset ranking", IEEE Transactions on Control Systems Technology, 25(1), 358-365. https://doi.org/10.1109/TCST.2016.2539329
  54. Zhang, J., L. Zhang, C. Wang, and M. Zhou (2017b) "Approximately optimal computing budget allocation for selection of the best and worst designs", IEEE Transactions on Automtic Control, 62(7), 3249-3261. https://doi.org/10.1109/TAC.2016.2628158