DOI QR코드

DOI QR Code

궤도상 유지보수를 위한 홀추력기 임무해석

Mission Analysis Involving Hall Thruster for On-Orbit Servicing

  • 투고 : 2020.07.22
  • 심사 : 2020.09.22
  • 발행 : 2020.10.01

초록

2019년 10월 발사된 Northrop Grumman사의 MEV-1(Mission Extenstion Vehicle)은 세계 최초의 무인임무로서 궤도상 유지보수(On-Orbit Servicing)가 실질적으로 가능함을 보였다. 물론 궤도상 유지보수 임무는 수십 년 전부터 제안된 개념으로 운영 중인 위성에 대한 궤도수정 및 유지, 추진제/장비 보급 및 업그레이드, 수리, 궤도상 조립 및 제작, 우주잔해 처리 등 다양한 임무개념으로 발전되고 있으며, 이번 MEV-1 임무의 성공으로 향후 세계적으로 정부기관 및 민간분야 위성사업에서의 시장이 확대될 것으로 예상된다. 궤도상 유지보수 임무는 임무의 특성상 기본적으로 고효율의 전기추진시스템의 활용은 필수적이다. 본 연구에서는 전기추진시스템 중 홀추력기를 활용한 간단한 궤도상 유지보수 임무에 대한 임무해석 내용을 소개하고자 한다. 임무사례로서 정지궤도위성의 수명연장 임무에 대해 다양한 홀추력기 설계변수조합에 대한 설계공간탐색을 수행하고, 설계공간분석 및 최적화를 통해 고려하는 임무에 적합한 홀추력기의 설계 및 운용 파라미터를 제안함과 동시에 임무성능을 도출하였다. 추가적으로 현재 궤도상 유지보수 임무해석 시 개선점과 홀추력기를 활용한 우주임무해석에서의 발전방향을 고찰하였다.

Launched in October 2019, Northrop Grumman's MEV-1 was the world's first unmanned mission demonstrating the practical feasibility of on-orbit servicing. Although the concept of on-orbit servicing was proposed several decades ago, it has been developed to various mission concepts providing services such as orbit change, station keeping, propellant and equipment supply, upgrade, repair, on-orbit assembly and production, and space debris removal. The historical success of MEV-1 is expected to expand the market of on-orbit servicing for government agencies and commercial sectors worldwide. The on-orbit servicing essentially requires the utilization of a highly propellant efficient electric propulsion system due to the nature of the mission. In this study, the space mission analysis for a simple on-orbit mission involving Hall thruster is conducted, which is life extension mission for geostationary orbit satellites. In order to analyze the mission, design space exploration for various Hall thruster design variable combinations is performed. The values of design variables and operational parameters of Hall thruster suitable for the mission are proposed through design space analysis and optimization, and mission performance is derived. In addition, the direction of further improvement for the current on-orbit mission analysis process and space mission analysis involving Hall thruster is reviewed.

키워드

참고문헌

  1. Canaday, H., "Servicing Revolution," Aerospace America, Vol. 56, No. 6, 2018, p. 34.
  2. Gebhardt, C., "Northrop Grumman makes history, Mission Extension Vehicle docks to target satellite," nasaspaceflight.com, February 26, 2020.
  3. Glogowski, M. J., Pilchuk, J. W., Kodys, A. D., Molinsky, J. M., Rahal, G. E., Eskenazi, M. I. and Tam, W., "Electric Propulsion Systems Development & Integration Activity at Orbital ATK," The 35th International Electric Propulsion Conference, IEPC-2017-293, October 2017, Atlanta, GA, USA.
  4. Pan, B., Pan, X. and Lu, P., "Finding Best Solution in Low-Thrust Trajectory Optimization by Two-Phase Homotopy," Journal of Spacecraft and Rockets, Vol. 56, No. 1, 2019, pp. 283-291. https://doi.org/10.2514/1.A34144
  5. Barbara, N. H., Destrez, S. L., Guardabasso, P. and Alary, D., "New GEO paradigm: Re-purposing satellite components from the GEO graveyard," Acta Astronautica, Vol. 173, August 2020, pp. 155-163. https://doi.org/10.1016/j.actaastro.2020.03.041
  6. Davis, J. P., Mayberry, J. P. and Penn, J. P., "On-Orbit Servicing: Inspection, Repair, Refuel, Upgrade, and Assembly of Satellites in Space," The Aerospace Corporation Center for Space Policy and Strategy, April 2019.
  7. Kazuya, K., Yamakawa, S., Imamura, S. and Kohata, H., "Development of Super Low Altitude Test Satellite (SLATS)," Proceedings of the 63rd International Astronautical Congress, IAC-12-B1.2.18, Naples, Italy, October 2012.
  8. Taccogna, F., Longo, S., Capitelli, M. and Schneider, R., "Start-Up Transient in a Hall Thruster," Contributions to Plasma Physics, Vol. 46, No. 10, 2006, pp. 781-786. https://doi.org/10.1002/ctpp.200610078
  9. Ahedo, E., Gallardo, J. M. and Martinez-Sanchez, M., "Model of the Plasma Discharge in a Hall Thruster with Heat Conduction," Physics of Plasmas, Vol. 9, No. 9, September 2002, pp. 4061-4070. https://doi.org/10.1063/1.1499496
  10. Fife, J. M., "Hybrid-PIC Modeling and Electrostatic Probe Survey of Hall Thruster," Ph.D. Thesis, Massachusetts Institute of Technology, September 1998.
  11. Wertz, J. R. and Larson, W. J., Space Mission Analysis and Design, 3rd Ed., Space Technology Library, Microcosm, Inc., 1999, p. 686.
  12. Goebel, D. M. and Katz, I., Fundamentals of Electric Propulsion, John Wiley & Sons, Inc., 2008, pp. 325-341.
  13. Kwon, K. B., "Design Space Exploration of the Hall Effect Thruster for Conceptual Design," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 39, No. 12, 2011, pp. 1133-1140. https://doi.org/10.5139/JKSAS.2011.39.12.1133
  14. Kwon, K. B., Walker, M. L. R. and Mavris, D. N., "Self-consistent, One-dimensional Analysis of the Hall Effect Thruster," Plasma Sources Science and Technology, Vol. 20, No. 4, 045021, 2011. https://doi.org/10.1088/0963-0252/20/4/045021
  15. Kechichian, J. A., "Reformulation of Edelbaum's Low-Thrust Transfer Problem Using Optimal Control Theory," Journal of Guidance, Control, and Dynamics, Vol. 20, No. 5, 1997, pp. 988-994. https://doi.org/10.2514/2.4145
  16. John, A. C., How to Apply Response Surface Methodology, American Society for Quality, 1990.
  17. Navneet, B. and Kanwal, R., Strategic Decision Making : Applying the Analytic Hierarchy Process, Springer London, 2004.