DOI QR코드

DOI QR Code

르야프노프 기반 가변 추적유도법칙을 이용한 무인항공기 랑데부 기동 기법

Rendezvous Maneuver of an Unmanned Aerial Vehicle Using Lyapunov-based Variable Pursuit Guidance

  • 투고 : 2020.06.23
  • 심사 : 2020.09.14
  • 발행 : 2020.10.01

초록

항공기의 임무수행 시간을 연장하기 위해 도입된 공중급유를 수행하기 위해서는 두 항공기간의 랑데부 기동이 필수적으로 요구된다. 본 논문에서는 공중급유를 위해 가변 추적유도법칙을 이용한 랑데부 유도기법을 다룬다. 르야프노프 안정성 이론을 이용하여 가변 추적유도법칙 기반 랑데부 유도기법을 설계하였다. 제안한 유도기법은 두 항공기가 일정한 속력으로 비행하고 있을 때, 두 항공기 간의 헤딩각이 일치하도록 작동하여 랑데부 기동을 수행하도록 한다. 수치 시뮬레이션을 통해 제안한 랑데부 유도기법의 성능을 검증하였다.

A lot of studies to overcome the limitation of flight time have been studied, since the requirement of complicated mission achievement of aircraft including Unmanned Aerial Vehicles(UAVs) has been increased. The fuel limitation could bring about not enough flight time to accomplish missions. For this reason, the rendezvous maneuver is required to accomplish aerial refueling missions. The rendezvous guidance law based on variable pursuit guidance is designed using Lyapunov stability theory in this study. Numerical simulation is performed to demonstrate the performance of the proposed rendezvous guidance.

키워드

참고문헌

  1. Yuan, P. J. and Hsu, S. C., "Rendezvous Guidance with Proportional Navigation," Journal of Guidance, Control, and Dynamics, Vol. 17, No. 2, 1994, pp. 409-411. https://doi.org/10.2514/3.21213
  2. Smith, A. L., "Proportional Navigation with Adaptive Terminal Guidance for Aircraft Rendezvous," Journal of Guidance, Control, and Dynamics, Vol. 31, No. 6, 2008, pp. 1832-1835. https://doi.org/10.2514/1.33535
  3. Yamasaki, T. and Balakrishnan, S. N., "Sliding Mode-based Pure Pursuit Guidance for Unmanned Aerial Vehicle Rendezvous and Chase with a Cooperative Aircraft," Proceeding of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 224, No. 10, 2010, pp. 1057-1067. https://doi.org/10.1243/09544100JAERO768
  4. Manathara, J. G. and Ghose, D., "Rendezvous of Multiple UAVs with Collision Avoidance Using Consensus," Journal of Aerospace Engineering, Vol. 25, No. 4, 2012, pp. 480-489. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000145
  5. Ratnoo, A., "Variable Deviated Pursuit for Rendezvous Guidance," Journal of Guidance, Control, and Dynamics, Vol. 88, No. 4, 2015, pp. 787-792. https://doi.org/10.2514/1.G000573
  6. Jiang, W., Wang, D., Wang, Y. and Ali, Z.A., "UAV Rendezvous Based on Time-Varying Vector Fields," Electronics Letters, Vol. 53, No. 10, 2017, pp. 653-655. https://doi.org/10.1049/el.2017.0180
  7. Rucco, A., Sujit, P. B., Aguiar, A. P., Borges de Sousa, J. and Pereira, F. L., "Optimal Rendezvous Trajectory for Unmanned Aerial-Ground Vehicles," IEEE Transactions on Aerospace and Electronic Systems, Vol. 54, No. 2, 2018, pp. 834-847. https://doi.org/10.1109/TAES.2017.2767958
  8. Fravolini, M. L., Ficola, A., Campa, G., Napolitano, M. R. and Seanor, B., "Modeling and Control Issues for Autonomous Aerial Refueling for UAVs using a Probe-Drogue Refueling System," Aerospace Science and Technology, Vol. 8, 2004, pp. 611-618. https://doi.org/10.1016/j.ast.2004.06.006
  9. Tsukerman, A., Weiss, M., Shima, T., Lobl, D. and Holzapfel, F., "Optimal Rendezvous Guidance Laws with Application to Civil Autonomous Aerial Refueling," Journal of Guidance, Control, and Dynamics, Vol. 41, No. 5, 2018, pp. 1167-1174. https://doi.org/10.2514/1.G003154
  10. Dai, X., Quan, Q., Ren, J., Xi, Z. and Cai, K. Y., "Terminal Iterative Learning Control for Autonomous Aerial Refueling Under Aerodynamic Disturbances," Journal of Guidance, Control, and Dynamics, Vol. 41, No. 7, 2018, pp. 1576-1583.
  11. Yoon, Y. J., Kim, M. G. and Kim, Y. D., "Three-Dimensional Path Planning for Aerial Refueling Between One Tanker and Multiple UAVs," International Journal of Aeronautical and Space Sciences, Vol. 19, 2018, pp. 1027-1040. https://doi.org/10.1007/s42405-018-0098-z
  12. Kim, M. G. and Kim, Y. D., "Lyapunov-Based Pursuit Guidance Law with Impact Angle Constraint," The 19th IFAC World Congress 2014, Cape Town, South Africa, August 2014.