해상풍력 발전단지의 전력망 연계방식에 따른 고장전류 분석

Analysis of fault current in offshore wind farm ccording to the grid connection method

안 진 홍*, 김 일 환**

Jin-Hong Ahn^{*}, Eel-Hwan Kim^{**}

Abstract

The installation cost or the magnitude of the fault current varies depending on the grid connection method of the offshore wind farm. Therefore, there is a need for an efficient power grid connection method considering the capacity and location of the complex. In particular, most power cables in offshore wind farms use 3-core considering cost and efficiency. In the event of a failure such as a short circuit, the entire cable must be replaced, which can lead to significant losses in terms of cost, considering repair costs and turbine downtime. Therefore, in this paper, a radial, ring, and molding method is introduced into a 100 MW wind farm to be installed at Jeju offshore, and a three-phase short circuit failure is performed using a PSCAD/EMTDC program to perform computer analysis. I would like to propose a suitable power grid connection method.

요 약

해상풍력 발전단지의 전력망 연계방식에 따라 설치비용이나 고장전류의 크기가 달라진다. 그렇기 때문에 단지의 용량과 위치 등을 고려한 효율적인 전력망 연계 방법이 필요하다. 특히 해상풍력 발전단지의 전력케이블은 대부분 비용 및 효율적인 부분을 고려하여 3-core를 사용한다. 케이블 단락 같은 고장이 발생하면 케이블 전체를 교체해야 하므로 수리비용 및 터빈 정지 기간을 고려하였을 때 비용적인 측면에서 상당한 손실이 발생할 수 있다. 따라서 본 논문에서는 제주해상에 설치될 100 MW 풍력단지에 방사형, 링형, 성형 방식을 도입하여 이에 따른 3상 단락고장을 PSCAD/EMTDC 프로그램을 활용하여 컴퓨 터 해석을 수행하고, 그 결과를 분석하여 모델 단지에 알맞은 전력망 연계방식을 제안하고자 한다.

Key words : PSCAD/EMTDC, CFI, Offshore Wind Power Plant, Radial, Ring, Star

I. 서론

우리나라는 오는 2030년까지 48.7 GW 규모의 재 생에너지 발전설비의 도입을 목표로 하고 있으며, 이 중 풍력발전 설비로 16.5 GW가 계획되어 있다. 육상풍력은 설치면적 및 소음 등 제약적이 조건이 많아 한계가 있는 반면 해상풍력발전은 풍속이 조 건이 양호할 뿐만 아니라 단지 대형화에 아주 유리

^{*} Dept. of Electrical Engineering, Jeju National University

 $[\]star$ Corresponding author

E-mail:ehkim@jejunu.ac.kr, Tel:+82-64-754-3674

Manuscript received Jun. 17, 2020; revised Aug. 17, 2020; accepted Aug. 24, 2020.

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

하다. 국내에는 제주도 지역에 상업 운전 중인 해 상풍력발전단지가 있으며, 제주도와 공공기관 그리 고 민간 기업들이 SPC(Special Purpose Company) 를 구성하여 도내 곳곳에서 해상풍력발전 단지 조 성을 추진하고 있다. 2017년에 발간된 제주특별자 치도 CFI(Carbon Free Island)2030 용역 보고서에 따르면 표 1과 같이 2030년까지 전력사용량의 100% 를 신재생에너지 공급목표를 계획하고 있고 해상 풍력발전의 차지하는 비중은 44%로 하고 있다[1]. 이는 향후 제주도가 추진하고 있는 CFI 계획에 있 어서 해상풍력이 굉장히 중요한 신재생에너지 공 급원임을 의미하고 있다.

 Table
 1. CFI 2030 energy supply plan.

 표
 1. CFI 2030 에너지공급 목표[2]

ΎΤ.	Init	٠	$\Lambda (\Lambda X)$
L.	1111		

Total	Offshore Onshore wind farm wind farm		PV	etc
4,311	1,900	450	1,411	550
(100%)	(44.07%)	(10.44%)	(32.73%)	12.76%)

제주도 해상에 풍력 발전단지 조성을 위해서는 몇 가지 조건을 고려해야 한다. 첫 번째, 환경조건 으로 바람, 물결, 수심, 해저 토양 및 특성 등을 고 려해야 한다. 두 번째, 발전단지 내 풍력 터빈의 최 적 배치를 위해 풍속, 풍향, 난류 강도와 같은 바람 의 변수를 반드시 고려해야 한다. 세 번째, 풍력 터 빈의 간격 결정의 요건으로써, 후류(wake) 및 난기 류(turbulence)에 의한 영향을 최소화해야 하는데, 이는 주 풍향 방향은 블레이드 직경의 5~9배의 공 간을 확보해야 하며, 수직 방향 바람은 블레이드 직경의 3~5배의 공간 확보를 해야 한다.

또한, 제주지역의 해상풍력 발전단지의 사회적,법 적, 환경적, 재정적인 입지조건을 고려할 때, 현재 발전 설비용량은 100 MW 수준이며, 공유수면을 포함한 수심 50 m이내, 해안선으로부터 거리 1 km 가 확보되어야 한다.

제주 해역은 2 km를 넘어가는 순간 수심이 급격 히 깊어지고 물살이 매우 빨라지기 때문에, 현재 상용 운전 중이거나 잠재량이 많고 경제성이 높은 해역 대부분이 그림 1과 같이 해역1~2 km에 분포 되어 있다[2].

해상풍력발전단지에서는 일반적으로 그림 2.(1) 와 같이 3-core 전력케이블을 사용한다. 그렇기 때

Fig. 1. Jeju Island offshore wind power generation location analysis.

그림 1. 제주도 해상풍력 발전 입지분석[2]

문에 3개의 core 사이에서 자기장이 상쇄되어 전력 손실을 줄일 수 있으며, 1-core 케이블에 비해 설 치비용이 상당히 저렴하고 추가적으로 내부에 통 신케이블도 내장되어있다. 하지만 무게가 많이 나 가기 때문에 다루기가 쉽지 않고, 케이블 간 연결 등의 기술적 어려움이 있다. 특히 케이블 소손 시 새로운 케이블로 교체해야하기 때문에 교체 비용 과 기간, 그리고 터빈이 멈춰있는 동안 발전수익의 감소에 대한 손실을 고려한다면 케이블 고장분석 은 반드시 선행적으로 연구할 필요가 있다[3].

해상풍력발전단지에서 전력케이블의 소손은 곧 3상 단락 고장의 의미이며, 전력계통의 고장 중 계 통에 주는 충격이 가장 큰 가혹한 고장이다. 전력 계통 구성계획을 검토할 경우 단락전류를 미리 알 수 있다면 고장에 대비한 경제적인 전기설비의 구 성[3] 등 차단기의 용량 결정 또는 차단기를 동작 시키기 위한 보호계전기의 정정 등에 이들 전류값 이 사용되며 이를 바탕으로 다음과 같은 전력계통 을 분석할 수 있다.

- 전력조류 계산(Load Flow Analysis)
- 안정도 해석(Stability Analysis)
- 고조파 분석(Harmonic Analysis)
- 과도현상 분석(Transient Analysis)

따라서 본 논문에서는 해상풍력발전단지 구축 시 풍력터빈의 전력망 연계 방식으로 널리 이용되고 있는 방사형, 링형, 성형 방식 3가지를 동일 입지조 건하에서 3상 단락사고 상정사고 모의해석을 PSCAD/ EMTDC 프로그램을 사용하여 그 결과를 도출하고 이에 따른 100 MW 급 제주해상풍력발전 단지에 알맞은 전력망 연계방식을 제안하고자 한다.

PSCAD/EMTDC(Power Systems Computer Aided Design/Electromagnetic Transients DC)는 캐나다 Manitoba HVDC(High Voltage Direct Current) 연 구소에서 개발한 전력시스템 시뮬레이션 프로그램 으로써 복잡한 전력계통의 연구를 위해 과도 상태 해석용 소프트웨어이다. DC 및 AC 시스템, 사고해 석, 전력전자, 제어시스템, 회전기, 송전라인 등에 이르기까지 다양한 분야를 시뮬레이션 할 수 있으 며 주파수 영역에서의 분석도 가능하다[3].

- Fig. 2. (1) Three-core cable with optic fibers, lead sheath and wire armour.
- 그림 2. (1) 광섬유, 리드시스 및 와이어 아머가 있는 3코어 케이블[4]

그림 2.(2)는 PSCAD/EMTDC로 구성되는 전력 망 연계방식의 모든 케이블에 해당 모델을 동일하 게 적용하였으며, 수심에서 50m아래에 위치한 조 건으로 설정하였다.

Fig. 2. (2) Three-core cable PSCAD/EMTDC modeling. 그림 2. (2) 3코어 케이블 PSCAD/EMTDC 모델링[4]

II. 본론

 Fig.
 3. (1) In case of three phase fault.

 그림
 3. (1) 3상 단락 고장시의 표현

3상 단락 시 고장전류는 대칭좌표법을 이용하여 구할 수 있다. 그림 3.(1)과 같이 발전기 단자에서 3 상 단락이 생기면 발전기의 각 상전압은 0이므로

$$\dot{V}_a = \dot{V}_b = \dot{V}_c = 0 \tag{1}$$

이다. 여기서, 그림 3.(2)같이 \dot{V}_0 :영상, \dot{V}_1 :정상, \dot{V}_2 : 역상으로 나타낼 수 있으므로 \dot{V}_a 에 대입하면

$$\dot{V}_a = \dot{V}_0 + \dot{V}_1 + \dot{V}_2 = 0 \tag{2}$$

$$\dot{V}_0 + \dot{V}_1 + \dot{V}_2 = \dot{V}_0 + a^2 \dot{V}_1 + a \dot{V}_2 = \dot{V}_0 + a \dot{V}_1 + a^2 \dot{V}_2 = 0$$
(3)

이다. 따라서

$$\dot{V}_0 = \dot{V}_1 = \dot{V}_2 = 0$$
 (4)

에서 발전기 기본식을 대입하면

$$\dot{V}_{0} = -\dot{Z}_{0}\dot{I}_{0} = -\frac{\dot{Z}_{0}\dot{E}_{a}}{\dot{Z}_{0} + \dot{Z}_{1} + \dot{Z}_{2}}$$

$$\dot{V}_{1} = \dot{E}_{a} - \dot{Z}_{1}\dot{I}_{1}$$

$$= \dot{E}_{a} - \frac{\dot{Z}_{1}\dot{E}_{a}}{\dot{Z}_{0} + \dot{Z}_{1} + \dot{Z}_{2}} = \frac{(\dot{Z}_{0} + \dot{Z}_{2})}{\dot{Z}_{0} + \dot{Z}_{1} + \dot{Z}_{2}}\dot{E}_{a}$$

$$\dot{V}_{2} = -\dot{Z}_{2}\dot{I}_{2} = -\frac{\dot{Z}_{2}\dot{E}_{a}}{\dot{Z}_{2} + \dot{Z}_{1} + \dot{Z}_{2}}$$
(5)

18

를 얻는다.

그림 3. (2) 각 상을 흐르는 대칭분 (a) 영상 전류, (b) 정상 전류, (c) 역상 전류

여기서 3상 단락은 평형고장이므로 단락전류는 고장점의 대지 전압을 고장점에서 본 계통 임피던 스 Z[<u>Ω</u>]로 나누어 다음과 같이 나타낼 수 있다.

$$\dot{I}_s = \frac{\dot{E}}{\dot{Z}} = \frac{\dot{E}}{\sqrt{R^2 + X^2}} \tag{6}$$

이므로 각 상의 단락 전류는

$$\dot{I}_{a} = \frac{\dot{E}_{a}}{\dot{Z}_{1}}, \ \dot{I}_{b} = \frac{a^{2}\dot{E}_{a}}{\dot{Z}_{1}}, \ \dot{I}_{b} = \frac{a\dot{E}_{a}}{\dot{Z}_{1}}$$
 (7)

로 나타낼 수 있다[5].

2.2 전력망 연계방식의 종류와 특징

제주 해상풍력발전단지의 입지기준에서 설비용 량은 100 MW 기준이므로 5.5 MW 용량의 터빈18기 이며, 그림 4와 같이 PSCAD/EMTDC tool의 library 의 소자의 조합으로 해당 터빈을 모델링 하였으며 해상풍력 발전단지의 전력망 연계방식을 방사형, 링형, 성형에 모두 동일하게 적용하였다. 터빈 간 거리는 식(8)과 같이 정의하였다.

 $Distance_{Turbine} = 5 \times Diameter_{blade}$ (8)

여기서, *Distance*_{Turbine}은 터빈과 터빈의 간격이 며, *Diameter_{blade}*는 터빈 블레이드 직경이다.

국내 터빈 제조사 기준 5.5 MW 터빈의 블레이드 직경이 140 m이므로, 터빈 간 간격은 약 700m로 정의하고 모든 터빈 배치방식에 동일하게 적용한 다[6]. 또한, 임의의 지점에서 3상 단락 사고를 발 생 시켜 해상풍력 발전단지와 연계된 변전소에서 단락전류의 상태 비교하도록 하겠다.

- Fig. 4. 5.5MW DFIG wind power modeling using PSCAD/ EMTDC tool.
- 그림 4. PSCAD/EMTDC tool을 활용한 5.5 MW DFIG 풍력 발전 모델링

Table 2. Wind turbine and cable selection.

표 - 2. 중덕 터민 및 케이글	i 신성	
--------------------	------	--

	Туре	Capacity	D(Tubine) ¹ D(substation) ²	Depth
Turbine	DFIG	5.5MW*18EA	700m	-
Cable	3-core	22.9kV	1km	50m

 $D_{(Tubine)}^{1}$: Between the wind turbine distance

 $D_{(substation)}^2$: Distance of substation from each feeder

Table 3. Comparison according to power grid connection method.

표 – 3. 선덕망 연계망식에 따	·른 비	교
--------------------	------	---

Туре	Advantages	Disadvantages	
Radial	Low construction costLess cable length & lossEasy topology control	• In case of failure, all systems shutdown	
Ring	• Improved version of the radial design in terms of reliability	• Increased cable cost & length	
Star	• Reliability of the system increases	 Longer cable length & cost Increased cable loss 	

2.2.1 방사형 전력망 연계

방사형 전력망은 그림 5.(1)과 같다. 다수의 풍력 터빈이 직렬구성으로 동일한 feeder에 연계된다. 풍력 터빈의 용량과 케이블의 허용전류에 따라 직 렬 feeder에 연계될 수 있는 최대 풍력 터빈 수가 결정된다. 방사형 전력망의 최대 장점은 저렴한 건 설비용과 토폴로지 제어가 상대적으로 용이하며, 다른 전력망 구성에 비해 케이블 길이가 짧고 차단 기 설치도 비교적 적다. 단점은 방사형 전력망 말단 의 케이블 또는 차단기의 고장으로 인해 feeder내 모든 터빈의 출력전류를 송전 할 수 없게 되는 치명 적이 단점이 있기 때문에 상대적으로 작은 MW급 규모의 해상풍력발전단지에 사용되고 있다[3].

구성은 그림 5.(2)와 같으며, 터빈 간 모든 간격은 일정하게 700 m를 적용하였고 각 Feeder에서 육상 변전소까지 거리는 1 km로 동일하게 적용하였다. Feeder#3 부근에 3상 단락사고를 발생시켜 결과를 확인하며, 그림 5.(3)과 같이 PSCAD/EMTDC tool 을 활용한 방사형 방식의 100 MW 해상풍력발전단 지를 모델링하였다.

Fig. 5. (1) Offshore wind power plant of radial type.그림 5. (1) 방사형 방식의 해상풍력발전단지

 Fig.
 5. (2)
 100 MW Offshore wind power plant of radial type.

 그림
 5. (2)
 방사형
 방식의
 100 MW 해상풍력발전단지

그림 6은 PSCAD/EMTDC 시뮬레이션을 활용하 여 시뮬레이션 결과에 따른 Feeder#3의 3상 단락사 고 발생에 따른 단락전류이며, 그래프에서 3상 단 락사고가 발생하는 3초 구간 이후 100 MW 단지에 서 발생되는 전류가 2.5 kA에서 43.2 kA까지 상승 하는 것을 확인 하였다.

Fig. 5. (3) Radial type 100 MW Offshore wind power plant using PSCAD/EMTDC tool.

그림 5. (3) PSCAD/EMTDC tool을 활용한 방사형 방식의 100 MW 해상풍력발전단지

2.2.2 링형 전력망 연계

링형 전력망은 신뢰성 측면에서 방사형 전력망 디자인의 개선된 버전이며, 모든 Feeder에 귀로 케 이블이 존재하다. 단점은 케이블 길이 증가에 따른 설치비용이 증가한다[3]. 구성은 그림 7.(1)과 같다. 터빈 간 모든 간격은 일정하게 700 m를 적용하였 고 육상변전소에서 Feeder별 가장 가까운 터빈까 지 거리는 1 km이며, 가장 먼 터빈에서 변전소까지 거리는 4.5 km로 적용하였다. 이외에 GW 단위의 단지구성에서는 HVDC설비가 포함된 해상풍력발 전단지에 경우에도 그림 7.(2)처럼 적용된다. 이 토 폴로지는 변전소와 풍력단지 연계 시 feeder수와 동일한 수의 HVDC 선로 차단기를 가진 풍력 단지 가 링 형식으로 구성 될 수 있다. Feeder#3 부근에 3상 단락사고를 발생시켜서 고장전류를 확인하며, 그림 7.(3)와 같이 PSCAD/EMTDC tool을 활용한 링형 방식의 100 MW 해상풍력발전단지를 모델링 하였다.

 Fig. 7. (1) 100MW Offshore wind power paint of Ring type.

 그림 7. (1) 링형 방식을 적용한 100 MW 해상풍력발전단지

Fig. 7. (2) GW-class offshore ring type wind power plant including HVDC system[4].

Fig. 7. (3) Ring type 100 MW Offshore wind power plant using PSCAD/EMTDC tool.

그림 7. (3) PSCAD/EMTDC tool을 활용한 링형 방식의 100 MW 해상풍력발전단지

그림 8은 PSCAD/EMTDC 시뮬레이션을 활용하 여 Feeder#3의 3상 단락사고 발생에 따른 단락전류 이며, 그래프에서 3상 단락사고가 발생하는 3초 구 간 이후 100 MW 단지에서 발생되는 전류가 2.5 kA에서 16.6 kA까지 상승하는 것을 확인 하였다.

Fig. 8. 3-phase fault current in Ring type. 그림 8. 링형 방식에서 3상 단락 전류

2.2.3 성형 전력망 연계

성형 전력망은 터빈과 육상변전소를 연결하는 케 이블의 정격을 줄일 수 있으며 개별 고장으로 인한 시스템 전체 고장 우려가 없다. 하지만 케이블 길 이가 길어지므로 케이블 선로 손실 및 비용 상승의 단점이 있으며, 그림 9.(1)과 같다[3]. 터빈 간 모든 간격은 일정하게 700 m를 적용하였고 육상변전소 에서 Feeder별 가장 가까운 터빈까지 거리는 1 km 이며, 터빈에서 변전소까지 각각 전력케이블로 연 계 하였다.

또한, GW 단위의 단지구성에서 HVDC설비가 포 함된 해상풍력발전단지에서 다음과 같은 경우는 그림 9.(2)처럼 적용된다. 풍력발전단지지 또는 변 전소에 연계된 선로는 중앙에 링형 노드에 연계되 어 있는 성형 구성이다. 풍력발전단지 개별에서 이 슈가 발생하여도 다른 단지는 정상적으로 운전이 가능하다. 그러나 모든 선로에 차단기가 포함되어 야하기 때문에 건설비용이 증가하는 단점이 있을 수 있다.

그림 9.(3)와 같이 PSCAD/EMTDC tool을 활용 하여 성형 방식의 100 MW 해상풍력발전단지를 모 델링하였으며, Feeder#3에서 제일 멀리 있는 터빈 부근에 3상 단락사고 발생시키고 결과를 확인한다. 그림 10은 PSCAD/EMTDC 시뮬레이션을 활용 하여 Feeder#3의 3상 단락사고 발생에 따른 단락전 류이며, 그래프에서 3상 단락사고가 발생하는 3초

구간 이후 100 MW 단지에서 발생되는 전류가 2.5 kA에서 14.8 kA까지 상승하는 것을 확인하였다.

Fig. 9. (1) 100 MW Offshore wind power plant of Star type. 그림 9. (1) 성형 방식을 적용한 100 MW 해상풍력발전단지

- Fig. 9. (2) GW-class star type offshore wind power plant including HVDC system[4].
- 그림 9. (2) HVDC 시스템을 포함하는 GW급 성형 해상풍력 단지[4]

Fig. 9. (3) Star type 100 MW Offshore wind power plant using PSCAD/EMTDC tool.

그림 9. (3) PSCAD/EMTDC tool을 활용한 성형 방식의 100 MW해상풍력발전단지

Fig. 10. 3-phase short circuit current in Star type. 그림 10. 성형 방식에서 3상 단락 전류

Fig. 11. Comparison of 3-phase short circuit current according to arrangement type. 그림 11. 배열방식에 따른 3상 단락 전류 비교

Ⅲ. 결론

본 논문에서는 PSCAD/EMTDC 프로그램을 이 용하여 풍력발전기의 전력망 연계방식에 따른 단 락사고를 제주도 해상풍력단지에 적용하여 그 결 과를 고찰하였다.

Table 4. Simulation result compare. 4. 시뮬레이션 결과 비교

(Unit : kA)

Type Fault	Reference	Radial	Ring	Star
3-phase fault current	2.5	43.2	16.6	14.8

그림 11을 보면 단락사고 발생 후, 방사형 방식이 43.2 kA로 상대적으로 단락전류가 크게 발생하였 고, 나머지 두 방식의 단락전류는 거의 비슷하게 발생하였지만 링형 방식의 16.6 kA보다 성형 방식 의 14.8 kA가 가장 적게 발생하는 것을 알 수 있다. 전력케이블의 단순 사고 측면에서 본다면 3상 단락 사고가 발생하여도 해당 터빈 이외에는 정상적으

퓨

로 발전하기 때문에 상대적으로 성형 방식이 유리 하다고 볼 수 있지만 정확한 전력계통의 분석은 3 상 단락 전류의 크기를 바탕으로 계통의 보호협조 및 서론에 언급하였던 전력계통의 요소들의 분석 을 통해 알 수 있을 것이다.

추후 연구에서는 3가지 전력망 연계방식을 고려 한 경제성과 기술적 검토를 통해 풍력발전단지별 특성에 적합한 연계방안을 마련할 예정이다.

References

 Jeju Special Self-Governing Province, Service Report of Carbon Free Island Jeju by 2020, 2017.
 CFI 2030 plan for integrated supplementation of new and renewable energy for energy independence Modified security service, 2019.

[3] Won-Sik Moon, Ara Jo, Jae-Chul Kim, In-Soo Bae, Gi-Gab Yoon, Sang-Ho Park, Young-Do Choy, "Optimization of Grid Network for Offshore Wind Power Plant," *Journal of Electrical Engineering & Technology*, pp.1095–1095, 2015.
[4] Powerd by Manitoba Hydro International Ltd.

"USER'S GUIDE on the use of PSCAD,"

[5] Dae Jeong Kim, Kye Ho Jon, Jung Nyun Kim, "Study on Connection of Submarine Cable System in Offshore Wind Farm," *Journal of Electrical Engineering & Technology*, 146–148, 2013.

[6] DIRK VAN HERTEM, ORIOL GOMIS-BELLMUNT, JUN LIANG, *HVDC Grids, Wiley*, 2016. DOI: 978-1-118-85915-5

[7] Lara DEPLA, "Harmonic Lnteactions in HVAC-Connected Offshore Windfarms," Master thesis, UNIVERSITAT POLITECNICA DE CATALUNYA MATER IN ENERGY ENGINEERING.

[8] O. Gomis-Bellmunt, J. Liang, J. Ekanayake, R. King, and N. Jenkins, "Topologies of multiterminal HVDC-VSC transmission for large offshore wind farms," *Electric Power Systems Research*, Vol.81, Issue2, pp.271–281, 2011.

DOI: 10.1016/j.epsr.2010.09.006

[9] G. Quinonez-Varela, G. Ault, O. Anaya-Lara, and J. McDonald, "Electrical collector system

options for large offshore wind farms," *IET Renewable Power Generation*, Vol.1, No.2, 2007. DOI: 10.1049/iet-rpg:20060017

[10] LS cable & System, "Medium Voltage AC Submarine Cables,"http://www.lscns.com/

[11] Doosan Heavy Industries & Construction,"WIND POWER"

http://www.doosanheavy.com/download/pdf/prod ucts/energy/DHI_Wind_Power_Brochure_Eng.pdf/ [12] G. Y. Song, transmission and distribution engineering, Dongil Publishing House, DOI: 978-89-0865-4-93560

BIOGRAPHY

Jin-Hong Ahn (Member)

2009 : BS degree in Electrical Engineering, Jeju University. 2011 : MS degree in Electrical Engineering, Jeju University. 2017~Present : PhD Candidate in Electrical Engineering, Jeju University.

2011~2017 : Engineer, HYOSUNG Heavyindustries.

Eel-Hwan Kim (Member)

1985 : BS degree in Electrical
Engineering, Chung-Ang University.
1987 : MS degree in Electrical
Engineering, Chung-Ang University.
1991 : PhD degree in Electrical
Engineering, Chung-Ang University.
1991 ~ Present : Professor, Jeju
National University.

1995~1996 : Post Doc, The Ohio State University.
2005~2006 : Visiting Scholar, University of Washington.
2019~Present : Dean of Engineering College, Jeju
National University.