DOI QR코드

DOI QR Code

Non-invasive Skin Barrier Lipid Packing Analysis Using FT-IR and Study of Cosmetic Formulation for Damaged Barrier

FT-IR을 활용한 비 침습적 피부 장벽 지질 패킹 분석과 손상된 장벽의 개선 제형 연구

  • Kim, Hye Jin (Division of Applied Chemistry and Cosmetic Science, Dongduk Women's University) ;
  • Kim, Sunyoung (Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation) ;
  • Lee, Seol-Hoon (Division of Applied Chemistry and Cosmetic Science, Dongduk Women's University)
  • 김혜진 (동덕여자대학교 화학-화장품 학부) ;
  • 김선영 (한국인삼공사) ;
  • 이설훈 (동덕여자대학교 화학-화장품 학부)
  • Received : 2020.08.13
  • Accepted : 2020.09.22
  • Published : 2020.09.30

Abstract

The barrier structure of the skin's epidermis is a key structure to prevent the loss of water inside the body and the invasion of foreign substances, and is composed of keratinocytes and intercellular lipids. At this time, the intercellular lipids of the skin barrier has the strongest structure when packed in an orthorhombic structure. However, it is damaged by various external causes and changes to a hexagonal structure. This change in physical structure can be analyzed non-invasively by analyzing the signal of the CH2-CH2 scissoring band of lipids using FT-IR. In this study, SDS was treated on porcine skin to construct a skin barrier damage model, and the degree of change in packing structure was quantified by analyzing FT-IR signals. We then judged whether the barrier of the damage model was recovered according to the treatment of the cosmetic formulation. From these results, an indirect method of measuring the water evaporation of the skin barrier to date can be supplemented. In addition, physical changes in the structure of the skin barrier can be utilized in a direct and efficient manner to identify the function and verify the formulation of various materials.

피부 표피의 장벽 구조는 신체 내부의 수분 손실을 방지하고 외부의 이물질의 침입을 막는데 핵심적인 구조이고 각질세포와 세포간 지질로 구성된다. 이 때, 피부 장벽의 세포간 지질은 orthorhombic 구조로 패킹되어있을 때 가장 강한 구조를 가지고 있다. 그러나 다양한 외부 원인에 의해 손상되어 hexagonal 구조로 변화한다. 이런 물리적인 구조의 변화는 FT-IR을 이용하여 지질의 CH2-CH2 scissoring band의 시그널은 분석하여 비 침습적으로 분석 가능하다. 본 연구에서는 SDS를 Porcine skin에 처리하여 피부 장벽 손상모델을 구축하고 FT-IR signal을 분석하여 패킹구조의 변화 정도를 수치화 하였다. 이후 화장품 제형의 처리에 따라서 손상 모델의 장벽 회복 여부를 판단하였다. 이를 통하여 기존의 피부 장벽의 수분 증발량을 분석하는 간접적인 측정 방식을 보완할 수 있다. 또한, 피부 장벽 구조의 물리적인 변화를 직접적이고 효율적으로 분석하는 방식으로 활용 가능하여 다양한 소재의 기능 규명과 제형의 검증에 사용될 수 있다.

Keywords

References

  1. K. P. Wilhelm, A. B. Cua, and H. I. Maibach, Skin Aging. Effect on transepidermal water loss, stratum corneum hydration, skin surface pH, and casual sebum content, Arch. Dermatol. 127(12), 1806 (1991). https://doi.org/10.1001/archderm.1991.04520010052006
  2. Z. Nemes, P. M. Steinert, Bricks and mortar of the epidermal barrier, Exp. Mol. Med. 31(1), 5 (1999). https://doi.org/10.1038/emm.1999.2
  3. L. Coderch, O. Lopez, A. de la Maza and J. L. Parra, Ceramides and skin function, Am. J. Clin. Dermatol. 4(2), 107 (2003). https://doi.org/10.2165/00128071-200304020-00004
  4. S. Lee, S. Jun, J. Yeom, S. Park, C. Lee and N. Kang, Optical clearing agent reduces scattering of light by the stratum corneum and modulates the physical properties of coenocytes via hydration, Skin Res. Technol. 24(3), 371 (2018). https://doi.org/10.1111/srt.12439
  5. S. Nisbet, H. Mahalingam, C. F. Gfeller, E. Biggs, S. Lucas, M. Thompson, M. R. Cargill, D. Moore and S. Bielfeldt, Cosmetic benefit of a biomimetic lamellar cream formulation on barrier function or the appearance of fine lines and wrinkles in randomized proof-of-concept clinical studies, Int. J. Cosmet. Sci. 41(1), 1 (2019). https://doi.org/10.1111/ics.12499
  6. M. Boncheva, F. Damien and V. Normand, Molecular organization of the lipid matrix in intact stratum corneum using ATR-FTIR spectroscopy, Biochim. Biophys. Acta. Biomembr. 1778, 1344 (2008). https://doi.org/10.1016/j.bbamem.2008.01.022
  7. E. Hashizume, T. Nakano, A. Kamimura and K. Morishita,Topical effects of N-acetyl-L-hydroxyproline on ceramide synthesis and alleviation of pruritus, Clin. Cosmet. Investig. Dermatol. 6, 43 (2013). https://doi.org/10.2147/CCID.S39370
  8. J. A. Bouwstra, G. S. Gooris, W. Bras and D. T. Downing,Lipid organization in pig stratum corneum, J. Lipid Res. 36(4), 685 (1995). https://doi.org/10.1016/S0022-2275(20)40054-9
  9. L. K. Tamm, S . A. Tatulian, Infrared spectroscopy of proteins and peptides in lipid bilayers, Q. Rev. Biophys. 30(4), 365 (1997). https://doi.org/10.1017/S0033583597003375
  10. M. Damien, F. Boncheva, The extent of orthorhombic lipid phases in the stratum corneum determines the barrier efficiency of human skin In Vivo, J. Investig. Dermatol. 130, 611 (2010). https://doi.org/10.1038/jid.2009.272
  11. R. D. Pensack, B. B. Michniak, D. J. Moore and R. Mendelsohn,Infrared kinetic/structural studies of barrier reformation in intact stratum corneum following thermal perturbation, Appl. Spectrosc. 60(12), 1399 (2006). https://doi.org/10.1366/000370206779321445
  12. M. Kucharekova, J. Schalkwijk, P. C. M. Van De Kerkhof and P. G. M. Van De Valk,Effect of a lipid-rich emollient containing ceramide 3 in experimentally induced skin barrier dysfunction, Contact Dermatitis. 46(6), 331 (2002). https://doi.org/10.1034/j.1600-0536.2002.460603.x
  13. I. Buraczewska, B. Berne, M. Lindberg, H. Torma and M. Loden, Changes in skin barrier function following long-term treatment with moisturizers, a randomized controlled trial, Br. J. Dermatol. 156(3), 492 (2007). https://doi.org/10.1111/j.1365-2133.2006.07685.x
  14. L. Rieppo, S. Saarakkala, T. Narhi, H. J. Helminen, J. S. Jurvelin and J. Rieppo, Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage, Osteoarthr. Cartil. 20(5), 451 (2012). https://doi.org/10.1016/j.joca.2012.01.010
  15. E. Khazanov, A. Priev, J. P. Shillemans and Y. Barenholz, Physicochemical and biological characterization of ceramide-containing liposomes: paving the way to ceramide therapeutic application, Langmuir, 24(13), 6965 (2008). https://doi.org/10.1021/la800207z
  16. P. S. Goyal, V. K. Aswal, Micellar structure and inter-micelle interactions in micellar solutions: results of small angle neutron scattering studies, Curr. Sci. 80(8), 972 (2001).
  17. G. Imokawa, A. Abe, K. Jin, Y. Higaki, M. Kawashima and A. Hidano, Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin, J. Invest. Dermatol. 96(4), 523 (1991). https://doi.org/10.1111/1523-1747.ep12470233
  18. R. Su, L. Yang, Y. Wang, S. Yu, Y. Guo, J. Deng, Q. Zhao and X. Jin, Formulation, development, and optimization of a novel octyldodecanol-based nanoemulsion for transdermal delivery of ceramide IIIB, Int. J. Nanomedicine. 12, 5203 (2017). https://doi.org/10.2147/IJN.S139975
  19. D. H. Kim, W. R. Park, J. H. Kim, E. C. Cho, E. J. An, J. W. Kim and S. G. Oh, Fabrication of pseudo-ceramide-based lipid microparticles for recovery of skin barrier function, Colloids Surfaces B Biointerfaces. 94, 236 (2012). https://doi.org/10.1016/j.colsurfb.2012.01.049
  20. R. Vyumvuhore, A. Tfayli, H. Duplan, A. Delalleau, M. Manfait and A. Baiilet-Guffroy,Effects of atmospheric relative humidity on stratum corneum structure at the molecular level: Ex vivo raman spectroscopy analysis, Analyst. 138(14), 4103 (2013). https://doi.org/10.1039/c3an00716b