DOI QR코드

DOI QR Code

New Approaches to Increase Skin Efficacy of Chaga Mushroom Extract using High Voltage P ulsed Electric Fields Technology

고전압 펄스 전기장 기술을 이용한 차가버섯 추출물의 피부 효능 증대 방법

  • Received : 2020.06.11
  • Accepted : 2020.08.26
  • Published : 2020.09.30

Abstract

In this study in order to develop new approaches we investigated using high voltage pulsed electric fields (PEF) technology to reduce the risks, protect the phyto-constituents and improve skin biological activities. After preparing a Chaga mushroom (Inonotus obliquus) extracts pretreated with PEF, components measurement and skin efficacy evaluation were performed. As a result of the content measurement, the content of polysaccharide and polyphenol were higher in the order of extracts treated with 50 Hz and 25 Hz at 0.5 kV/cm, and the content of protein was the highest in extracts treated with 25 Hz at 0.5k V/cm. Similar to the results of the polyphenol measurements, extracts treated with 25 Hz and 50 Hz at 0.5 kV/cm showed leading DPPH scavenging ability. The cell protection effect against sodium dodecyl sulfate (SDS) and UVB was finest in extracts treated with 25 Hz at 0.5 kV/cm, which had the highest protein content. And the hyaluronic acid synthesis was leading in extracts treated with 50 Hz and 100 Hz at 0.5 kV/cm. Therefore, the active ingredient of the high-voltage PEF pre-treatment Chaga mushroom extract can be developed as a functional material with cell protection and moisturizing effect, and such green technology is expected to be used in various fields of cosmetics and material development.

본 연구에서는 고전압 펄스 전기장 기술을 사용하여 식물 내 유효성분과 피부 효능을 증대시키고자 하였다. 고전압 펄스 전기장을 전처리한 차가 버섯(Inonotus obliquus) 추출물을 제조한 후, 성분 측정과 피부 효능 평가를 수행하였다. 총 당과 폴리페놀 함량은 0.5 kV/cm에서 50 Hz, 25 Hz 전처리 추출물 순으로, 총 단백질 함량은 0.5 kV/cm, 25 Hz 전처리 추출물에서 상온 물 추출물과 에탄올 추출물보다 높게 측정되었다. DPPH 소거능 효과는 폴리페놀 함량 결과와 유사하게 0.5 kV/cm에서 25 Hz, 50 Hz의 전처리 추출물에서 가장 우수하였다. 피부 효능에서는 단백질 함량이 가장 높은 0.5 kV/cm, 25 Hz 전처리 추출물에서 sodium dodecyl sulfate (SDS)와 UVB에 대한 세포 보호효과가 가장 우수하였으며, 0.5k V/cm에서 50 Hz, 100 Hz 전처리 추출물에서 히알루론산 생성 촉진이 가장 우수하였다. 따라서 고전압 펄스 전기장 전처리 차가 추출물의 유효성분, 피부 효능이 증대하는 것을 확인하여 세포 보호 및 보습 효과가 있는 기능성 소재로의 개발이 가능하며, 이러한 green technology가 화장품 분야와 소재개발에 다양하게 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. R. Abarca-Vargas, C. F. Pena Malacara, and V. L. Petricevich, Characterization of chemical compounds with antioxidant and cytotoxic activities in Bougainvillea x buttiana holttum and Standl, (var. Rose) extracts, Antioxidants (Basel), 5(4), 45 (2016). https://doi.org/10.3390/antiox5040045
  2. Q. E. Do, A. E. Angkawijaya, P. L. Tran-Nguyen, L. H. Huynh, F. E. Soetaredjo, S. Ismadji, and Y. H. Ju, Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatic, J Food Drug Anal, 22(3), 296 (2014). https://doi.org/10.1016/j.jfda.2013.11.001
  3. M. D L. de Castro and L. E. Garcia-Ayuso, Soxhlet extraction of solid materials: an outdated technique with a promising innovative future, Anal. Chim. Acta, 369(1-2), 1 (1998). https://doi.org/10.1016/S0003-2670(98)00233-5
  4. D. Zhao, X. A. Zeng, D. W. Sun, and D. Liu, Effects of pulsed electric field treatment on (+)-catechin-acetaldehyde condensation, Innov. Food Sci. Emerg. Technol., 20, 100 (2013). https://doi.org/10.1016/j.ifset.2013.07.007
  5. J. H. Lim, J. M. Shim, D. U. Lee, Y. H. Kim, and K. J. Park, Pulsed electric fields effects on drying of white ginseng and extraction of soluble components, Korean J. Food Sci. Technol., 44(6), 704 (2012). https://doi.org/10.9721/KJFST.2012.44.6.704
  6. S. Ho and G. S. Mittal, High voltage pulsed electrical field for liquid food pasteurization, Food Rev. Int., 16(4), 395 (2000). https://doi.org/10.1081/FRI-100102317
  7. H. N. R ajha, A. M . Abi- Khattar, S . E. K antar, N . Boussetta, N. Lebovka, R. G. Maroun, N. Louka, and E. Vorobiev, Comparison of aqueous extraction efficiency and biological activities of polyphenols from pomegranate peels assisted by infrared, ultrasound, pulsed electric fields and high-voltage electrical discharges, Innov. Food Sci. Emerg. Technol., 58, 102212 (2019). https://doi.org/10.1016/j.ifset.2019.102212
  8. E. Bozinou, I. Karageorgou, G. Batra, V. G. Dourtoglou, and S. I. Lalas, Pulsed electric field extraction and antioxidant activity determination of Moringa oleifera dry leaves: a comparative study with other extraction techniques, Beverages, 5(1), 8 (2019). https://doi.org/10.3390/beverages5010008
  9. L. Ma, H. Chen, W. Zhu, and Z. Wang, Effect of different drying methods on physicochemical properties and antioxidant activities of polysaccharides extracted from mushroom Inonotus obliquus, Food Res. Int., 50(2), 633 (2013). https://doi.org/10.1016/j.foodres.2011.05.005
  10. H. K. Ju, H. W. Chung, S. S. Hong, J. H. Park, J. Lee, and S. W. Kwon, Effect of steam treatment on soluble phenolic content and antioxidant activity of the chaga mushroom (Inonotus obliquus), Food Chem., 119(2), 619 (2010). https://doi.org/10.1016/j.foodchem.2009.07.006
  11. J. Glamoclija, A. Ciric, M. Nikolic, A. Fernandes, L. Barros, R. C. Calhelha, I. C. F. R. Ferreira, M. Sokovic, and L. J. L. D. V. Griensven, Chemical characterization and biological activity of chaga (Inonotus obliquus) a medicinal "mushroom", J. Ethnopharmacol., 162, 323 (2015). https://doi.org/10.1016/j.jep.2014.12.069
  12. S. J. Lee, H. J. Choi, and S. C. Min, Pulsed electric field pasteurization of mandarin and carrot juices, Korean J. Food Sci. Technol., 49(4), 408 (2017). https://doi.org/10.9721/KJFST.2017.49.4.408
  13. A. Boulaaba, S. Toepfl, M. Kiessling, N. Egen, and G. Klein, Effect of pulsed electric fields on the endogenous microflora and physico-chemical properties of porcine blood plasma, Arch. Lebensmittelhyg., 69(6), 164 (2018).
  14. S. Y. Leong, L. K. Richter, D. Knorr, and I. Oey, Feasibility of using pulsed electric field processing to inactivate enzymes and reduce the cutting force of carrot (Daucus carota var. Nantes), Innov. Food Sci. Emerg. Technol., 26, 159 (2014). https://doi.org/10.1016/j.ifset.2014.04.004
  15. M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, Colorimetric method for determination of sugars and related substances, Anal. Chem., 28(3), 350 (1956). https://doi.org/10.1021/ac60111a017
  16. K. Slinkard and V. L. Singleton, Total phenol analysis: automation and comparison with manual method, Am. J. Enol. Viticult., 28, 49 (1977).
  17. P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, and D. C. Klenk, Measurement of protein using bicinchoninic acid, Anal. Biochem., 150(1), 76 (1985). https://doi.org/10.1016/0003-2697(85)90442-7
  18. Y. J. Kim, Evaluation of antioxidant activity and thermal stability of plant polyphenols, Biomater. Res., 13(1), 30 (2009).
  19. C. Liu, C. Chen, H. Mo, H. Ma, E. Yuan, and Q. Li, Characterization and DPPH radical scavenging activity of gallic acid-lecithin complex, Trop. J. Pharm. Res., 13(8), 1333 (2014). https://doi.org/10.4314/tjpr.v13i8.19
  20. D. Alotto, S. Ariotti, S. Graziano, R. Verrua, M. Stella, G. Magliacani, and C. Castagnoli, The role of quality control in a skin bank: tissue viability determination, Cell Tissue Bank, 3(1), 3 (2002). https://doi.org/10.1023/A:1021846703301
  21. P. Ngamwongsatit, P. P. Banada, W. Panbangred, and A. K. Bhunia, WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic Bacillus species using CHO cell line, J. Microbiol. Methods, 73(3), 211 (2008). https://doi.org/10.1016/j.mimet.2008.03.002
  22. S. R. Park, Y. M. Kim, B. B. Choi, and J. Y. Kim, The effect of the cytotoxicity of sodium lauryl sulfate containing toothpaste on HaCaT and NIH-3T3 cells, J. Korean Soc. Dent. Hyg., 15(4), 719 (2015). https://doi.org/10.13065/jksdh.2015.15.04.719
  23. D. Kulms and T. Schwarz, Molecular mechanisms of UV induced apoptosis, Photodermatol. Photoimmunol. Photomed., 16(5), 195 (2000). https://doi.org/10.1034/j.1600-0781.2000.160501.x
  24. M. Ichihashi, M. Ueda, A. Budiyanto, T. Bito, M. Oka, M. Fukunaga, K. Tsuru, and T. Horikawa, UV-induced skin damage, Toxicology, 189(1), 21 (2003). https://doi.org/10.1016/S0300-483X(03)00150-1
  25. C. R. Harding, A. Watkinson, A. V. Rawlings, and I. R. Scott, Dry skin, moisturization and corneodesmolysis, Int. J. Cosmet. Sci., February, 22(1), 21 (2000). https://doi.org/10.1046/j.1467-2494.2000.00001.x
  26. H. Y. Yu, I. J. Yang, V. R. Lincha, I. S. Park, D. U. Lee, and H. M. Shin, The effects of the fruits of Foeniculum vulgare on skin barrier function and hyaluronic acid production in HaCaT keratinocytes, Journal of Life Science, 25(8), 880 (2015). https://doi.org/10.5352/JLS.2015.25.8.880