DOI QR코드

DOI QR Code

Development of a Daily Epidemiological Model of Rice Blast Tailored for Seasonal Disease Early Warning in South Korea

  • Received : 2020.07.20
  • Accepted : 2020.07.29
  • Published : 2020.10.01

Abstract

Early warning services for crop diseases are valuable when they provide timely forecasts that farmers can utilize to inform their disease management decisions. In South Korea, collaborative disease controls that utilize unmanned aerial vehicles are commonly performed for most rice paddies. However, such controls could benefit from seasonal disease early warnings with a lead time of a few months. As a first step to establish a seasonal disease early warning service using seasonal climate forecasts, we developed the EPIRICE Daily Risk Model for rice blast by extracting and modifying the core infection algorithms of the EPIRICE model. The daily risk scores generated by the EPIRICE Daily Risk Model were successfully converted into a realistic and measurable disease value through statistical analyses with 13 rice blast incidence datasets, and subsequently validated using the data from another rice blast experiment conducted in Icheon, South Korea, from 1974 to 2000. The sensitivity of the model to air temperature, relative humidity, and precipitation input variables was examined, and the relative humidity resulted in the most sensitive response from the model. Overall, our results indicate that the EPIRICE Daily Risk Model can be used to produce potential disease risk predictions for the seasonal disease early warning service.

Keywords

References

  1. Agrios, G. N. 2005. Plant pathology. 5th ed. Elsevier Academic Press, Burlington, MA, USA. 922 pp.
  2. Berger, R. D. 1977. Application of epidemiological principles to achieve plant disease control. Annu. Rev. Phytopathol. 15:165-183. https://doi.org/10.1146/annurev.py.15.090177.001121
  3. Calvero, S. B. Jr., Coakley, S. M. and Teng, P. S. 1996. Development of empirical forecasting models for rice blast based on weather factors. Plant Pathol. 45:667-678. https://doi.org/10.1046/j.1365-3059.1996.d01-168.x
  4. De Wolf, E. D., Madden, L. V. and Lipps, P. E. 2003. Risk assessment models for wheat Fusarium head blight epidemics based on within-season weather data. Phytopathology 93:428-435. https://doi.org/10.1094/PHYTO.2003.93.4.428
  5. Duku, C., Sparks, A. H. and Zwart, S. J. 2016. Spatial modelling of rice yield losses in Tanzania due to bacterial leaf blight and leaf blast in a changing climate. Clim. Change 135:569-583. https://doi.org/10.1007/s10584-015-1580-2
  6. Easterling, W. E. and Mjelde, J. W. 1987. The importance of seasonal climate prediction lead time in agricultural decision making. Agric. For. Meteorol. 40:37-50. https://doi.org/10.1016/0168-1923(87)90053-0
  7. El Refaei, M. J. 1977. Epidemiology of rice blast disease in the tropics with special reference to leaf wetness in relation to disease development. Ph.D. thesis. Faculty of the Postgraduate School, Indian Agricultural Research Institute, New Delhi, India.
  8. Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L. and Gurr, S. J. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186-194. https://doi.org/10.1038/nature10947
  9. Greer, C. A. and Webster, R. K. 2001. Occurrence, distribution, epidemiology, cultivar reaction, and management of rice blast disease in California. Plant Dis. 85:1096-1102. https://doi.org/10.1094/PDIS.2001.85.10.1096
  10. Han, E., Ines, A. V. and Baethgen, W. E. 2017. Climate-Agriculture-Modeling and Decision Tool (CAMDT): A software framework for climate risk management in agriculture. Environ. Model. Softw. 95:102-114. https://doi.org/10.1016/j.envsoft.2017.06.024
  11. Hansen, J. W. and Indeje, M. 2004. Linking dynamic seasonal climate forecasts with crop simulation for maize yield prediction in semi-arid Kenya. Agric. For. Meteorol. 125:143-157. https://doi.org/10.1016/j.agrformet.2004.02.006
  12. Hensawang, S., Wangwongchai, A., Humphries, U. and Bunsri, T. 2017. Simulation of severity of rice blast disease in Prachin Buri using plant disease epidemiological model: simulation of rice blast disease. In: Proceedings of the 22nd Annual Meeting in Mathematics (AMM 2017), pp. 1-10. Chiang Mai University, Chiang Mai, Tailand.
  13. Heong, K. L., Teng, P. S. and Moody, K. 1995. Managing rice pests with less chemicals. GeoJournal 35:337-349. https://doi.org/10.1007/BF00989142
  14. Hijmans, R. J. 2016. Raster: geographic data analysis and modeling. URL https://CRAN.R-project.org/package=raster [30 July 2020].
  15. Katsantonis, D., Kadoglidou, K., Dramalis, C. and Puigdollers, P. 2017. Rice blast forecasting models and their practical value: a review. Phytopathol. Mediterr. 56:187-216.
  16. Kim, C. K. and Kim, C. H. 1993. The rice leaf blast simulation model EPIBLAST. In: Systems approaches for agricultural development, eds. by F. W. T. P. de Bries, P. Teng and K. Metselaar, pp. 309-321. Springer, Dordrecht, Netherlands.
  17. Kim, K.-H. and Cho, J. 2016. Predicting potential epidemics of rice diseases in Korea using multi-model ensembles for assessment of climate change impacts with uncertainty information. Clim. Change 134:327-339. https://doi.org/10.1007/s10584-015-1503-2
  18. Kim, K.-H., Cho, J., Lee, Y. H. and Lee, W.-S. 2015. Predicting potential epidemics of rice leaf blast and sheath blight in South Korea under the RCP 4.5 and RCP 8.5 climate change scenarios using a rice disease epidemiology model, EPIRICE. Agric. For. Meteorol. 203:191-207. https://doi.org/10.1016/j.agrformet.2015.01.011
  19. Kim, K.-H., Raymundo, A. D. and Aikins, C. M. 2019a. Development of a rice tungro epidemiological model for seasonal disease risk management in the Philippines. Eur. J. Agron. 109:125911. https://doi.org/10.1016/j.eja.2019.04.006
  20. Kim, K.-H., Shin, Y., Lee, S. and Jeong, D. 2019b. Use of seasonal climate forecasts in agricultural decision-making for crop disease management. In: Adaptation to climate change in agriculture, eds. by T. Iizumi, R. Hirata and R. Matsuda, pp. 173-191. Springer, Singapore.
  21. Kim, M.-K., Han, M.-S., Jang, D.-H., Baek, S.-G., Lee, W.-S. and Kim, Y.-H. 2012. A production method for historical climate data with 1-km-resolution grids. Clim. Res. 7:55-68. https://doi.org/10.3354/cr007055
  22. Lee, J.-H. 2014. Evaluation of impact on the essential problem according to the new scenario of climate change. Research Report, 2014-01. Rural Development Administration, Jeonju, Korea. 81 pp..
  23. Lee, Y. H. 2012. One-stop treatment for pest prediction, prediction and diagnosis. Life Pestic. 277:22-25.
  24. Long, D. H., Lee, F. N. and TeBeest, D. O. 2000. Effect of nitrogen fertilization on disease progress of rice blast on susceptible and resistant cultivars. Plant Dis. 84:403-409. https://doi.org/10.1094/PDIS.2000.84.4.403
  25. Madden, L. V. and Ellis, M. A. 1988. How to develop plant disease forecasters. In: Experimental techniques in plant disease epidemiology, eds. by J. Kranz and J. Rotem, pp. 191-208. Springer, Berlin, Germany.
  26. Parker, P., Letcher, R., Jakeman, A., Beck, M. B., Harris, G., Argent, R. M., Hare, M., Paul-Wostl, C., Voinov, A., Janssen, M, Sullivan, P., Scoccimarro, M., Friend, A., Sonnenshein, M., Barker, D., Matejicek, L., Odulaja, D., Deadman, P., Lim, K., Larocque, G., Tarikhi, P., Fletcher, C., Put, A., Maxwell, T., Charles, A., Breeze, H., Nakatani, N., Mudgal, S., Naito, W., Osidele, O., Eriksson, I., Kautsky, U., Naeslund, B., Kumblad, L., Park, R., Maltagliati, S., Girardin, P., Rizzoli, A., Mauriello, D., Hoch, R., Pelletier, D., Reilly, J., Olafsdottir, R. and Bin, S. 2002. Progress in integrated assessment and modelling. Environ. Model. Softw. 17:209-217. https://doi.org/10.1016/S1364-8152(01)00059-7
  27. Pautasso, M., Doring, T. F., Garbelotto, M., Pellis, L. and Jeger, M. J. 2012. Impacts of climate change on plant diseases: opinions and trends. Eur. J. Plant Pathol. 133:295-313. https://doi.org/10.1007/s10658-012-9936-1
  28. Roberts, M. J., Schimmelpfenning, D., Ashley, E., Livingston, M., Ash, M. and Vasavada, U. 2006. The value of plant disease early-warning systems: a case study of USDA's soybean rust coordinated framework (economic research report No. 18). USDA Economic Research Service, Washington, DC, USA. 21 pp.
  29. Rural Development Administration. 2015. Crop diseases and pests monitoring management report (2002-2015). Rural Development Administration, Jeonju, Korea. 340 pp.
  30. Rykiel, E. J. Jr. 1996. Testing ecological models: the meaning of validation. Ecol. Model. 90:229-244. https://doi.org/10.1016/0304-3800(95)00152-2
  31. Savary, S., Nelson, A., Willocquet, L., Pangga, I. and Aunario, J. 2012. Modeling and mapping potential epidemics of rice diseases globally. Crop Prot. 34:6-17. https://doi.org/10.1016/j.cropro.2011.11.009
  32. Singh, S. and Mohan, C. 2016. Effect of different leaf wetness durations and temperatures on incubation period and development of leaf blast disease of basmati rice. Plant Dis. Res. 31:49-51.
  33. Sittisak, I., Saruda, H., Angkool, W., Thidarat, B. and Usa, H. 2017. Numerical solution of the differential equation for simulation of the rice blast disease. J. Appl. Sci. Environ. Manage. 21:1272-1275.
  34. Sparks, A. H., Forbes, G. A., Hijmans, R. J. and Garrett, K. A. 2011. A metamodeling framework for extending the application domain of process-based ecological models. Ecosphere 2:1-14.
  35. Stone, R. C. and Meinke, H. 2005. Operational seasonal forecasting of crop performance. Philos. Trans. R. Soc. B Biol. Sci. 360:2109-2124. https://doi.org/10.1098/rstb.2005.1753
  36. Xu, X. 2003. Effects of environmental conditions on the development of Fusarium ear blight. Eur. J. Plant Pathol. 109:683-689. https://doi.org/10.1023/A:1026022223359
  37. Yeh, W.-H., Park, H.-H., Nam, Y.-J., Kim, S.-A., Lee, J.-H., Shim, H.-S., Kim, Y.-K., Lee, Y.-H. and Lee, Y.-H. 2008. Establishment of economic threshold by evaluation of yield component and yield damages caused by rice leaf blast (Magnaporthe grisea). Res. Plant Dis. 14:21-25. https://doi.org/10.5423/RPD.2008.14.1.021
  38. Vonk Noordegraaf, A., Nielen, M. and Kleijnen, J. P. C. 2003. Sensitivity analysis by experimental design and metamodeling: case study on simulation in national animal disease control. Eur. J. Oper. Res. 146:433-443. https://doi.org/10.1016/S0377-2217(02)00257-6
  39. Wichink Kruit, R. J. W., van Pul, A. J., Jacobs, A. F. G. and Heusinkveld, B. G. 2004. Comparison between four methods to estimate leaf wetness duration caused by dew on grassland. In: Conference on Agricultural and Forest Meteorology, 2004, pp. 1-4. American Meteorological Society, Vancouver, Canada.