Acknowledgement
The research described in this paper was financially supported by the Scientific and Technological Research Council (TUBITAK) of Turkey under contract no: 114M497. Additional financial support was also received from the Scientific Research Project Office of Ç ukurova University under contract no: FYL-2016-5845.
References
- Canpolat, C., Yayla, S., Sahin, B. and Akilli, H. (2009), "Dye visualization of the flow structure over a yawed nonslender delta wing", J. Aircraft, 46, 1818-1822. https://doi.org/10.2514/1.45274.
- Canpolat, C., Yayla, S., Sahin, B. and Akilli, H. (2012), "Observation of the vortical flow over a yawed delta wing", J. Aerosp. Eng., 25(4), 613-626. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000163.
- Chen, M., Liu, P., Guo, H. and Qu, Q. (2015), "Effect of sideslip on high-angle-of-attack vortex flow over close-coupled canard configuration", J. Aircraft, 53, 217-230. https://doi.org/10.2514/1.C033305.
- Delery, J.M. (1994), "Aspects of vortex breakdown", Progress Aerosp. Sci., 30, 1-59. https://doi.org/10.1016/0376-0421(94)90002-7.
- Erickson, G., Schreiner, J. and Rogers, L. (1989), "On the structure, interaction, and breakdown characteristics of slender wing vortices at subsonic, transonic, and supersonic speeds", In 16th Atmospheric Flight Mechanics Conference.
- Ericsson, L.E. (1992), "Sources of high alpha vortex asymmetry at zero sideslip", J. Aircraft, 29(6), 1086-1090. https://doi.org/10.2514/3.56864
- Escudier, M. (1988), "Vortex breakdown: Observations and explanations", Progress Aerosp. Sci., 25, 189-229. https://doi.org/10.1016/0376-0421(88)90007-3.
- Gursul, I. and Wang, Z. (2018), "Flow control of tip/edge vortices", AIAA J., 56(5), 1731-1749. https://doi.org/10.2514/1.J056586.
- Gursul, I., Gordnier, R. and Visbal, M. (2005), "Unsteady aerodynamics of nonslender delta wings", Progress Aerosp. Sci., 41, 515-557. https://doi.org/10.1016/j.paerosci.2005.09.002
- Hall, M.G. (1972), "Vortex breakdown", Annu. Rev. Fluid Mech., 4(1), 195-218. https://doi.org/10.1146/annurev.fl.04.010172.001211.
- Johnson, Jr., Joseph, L., Grafton, S.B. and Long, P. (1980), "Exploratory investigation of the effects of vortex bursting on the high angle-of-attack lateral-directional stability characteristics of highly-swept wings.", A Collection of Technical Papers, AIAA 11th Aerodynamic Testing Conference, Colorada, March.
- Karasu, I., Sahin, B., Akilli, H. and Canpolat, C. (2015), "Dye visualization of a yawed slender delta wing", J. Therm. Eng., 1(2), 646-654.
- Ke, S.T., Zhu, P. and Ge, Y.J. (2019), "Effects of different wind deflectors on wind loads for extra-large cooling towers", Wind Struct., 28(5), 299-313. https://doi.org/10.12989/was.2019.28.5.299.
- Lee, M. and Ho, C.M. (1990), "Lift force of delta wings", Appl. Mech. Rev., 43(9), 209-221. https://doi.org/10.1115/1.3119169.
- Lu, Z.Y. and Zhu, L.G. (2004), "Study on forms of vortex breakdown over Delta Wing", Chinese J. Aeronaut., 17, 13-16. https://doi.org/10.1016/S1000-9361(11)60196-9.
- Lucca-Negro, O. and O'Doherty (2001), "Vortex bursting: A review", Progress Energy Combustion Sci., 27(4), 431-481. https://doi.org/10.1016/S0360-1285(00)00022-8
- Meng, X., Liu, F. and Luo, S. (2018), "Effect of low dorsal fin on the breakdown of vortices over a slender delta wing", Aerosp. Sci. Technol., 81, 316-321. https://doi.org/10.1016/j.ast.2018.08.017.
- Menke, M., Yang, H. and Gursul, I. (1996), "Further experiments on fluctuations of vortex breakdown location", The 34th Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.1996-205.
- Nelson, R.C. and Pelletier, A. (2003), "The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers", Progress Aerosp. Sci., 39(2-3), 185-248. https://doi.org/10.1016/S0376-0421(02)00088-X.
- Ozgoren, M., Sahin, B. and Rockwell, D. (2002), "Vortex structure on a Delta Wing at high angle of attack", AIAA J., 40, 285-292. https://doi.org/10.2514/2.1644.
- Ozturk, N.A., Akkoca, A. and Sahin, B. (2008), "PIV measurements of flow past a confined cylinder", Experiments Fluids, 44(6), 1001-1014. https://doi.org/10.1007/s00348-007-0459-z.
- Payne, F.M. and Nelson, R.C. (1986), "Experimental investigation of vortex bursting on a Delta Wing", NASA Technical Report, Report No. N86-27196.
- Sahin, B., Akilli, H., Lin, J.C. and Rockwell, D. (2001), "Vortex breakdown-edge interaction: consequence of edge oscillations", AIAA J., 39, 865-876. https://doi.org/10.2514/2.1390.
- Sahin, B., Yayla, S., Canpolat, C. and Akilli, H. (2012), "Flow structure over the yawed nonslender diamond wing", Aerosp Sci Technol, 23, 108-119. https://doi.org/10.1016/j.ast.2011.06.008.
- Shields, M. and Mohseni, K. (2012), "Effects of sideslip on the aerodynamics of low-aspect-ratio low-Reynolds-number wings", AIAA J., 50(1), 85-99. https://doi.org/10.2514/1.J051151.
- Soloff, S.M. and Meinhart, C.D. (1999), CLEANVEC: PIV Vector Validation Software. Available from the Laboratory for Turbulence and Complex Flow at the University of Illinois, U.S.A.
- Sun, H. and Ye, J. (2016), "3-D characteristics of conical vortex around large-span flat roof by PIV technique", Wind Struct., 22(6), 663-684. https://doi.org/10.12989/was.2016.22.6.663.
- Taylor, G.S. and Gursul, I. (2004), "Buffeting flows over a lowsweep delta wing", AIAA J., 42(9), 1737-1745. https://doi.org/10.2514/1.5391.
- Verhagen, N. (2000), "Effect of Sideslip on the Flow over a 65-deg Delta Wing", In the 38th Aerospace Sciences Meeting and Exhibit.
- Verhagen, N.G. and Jobe, C.E. (2003), "Wind-tunnel study on a 65-deg Delta Wing at sideslip", J. Aircraft, 40, 290-296. https://doi.org/10.2514/2.3092.
- Wentz, Jr., W.H. and Kohlman, D.L. (1971), "Vortex breakdown on slender sharp-edged wings", J. Aircraft, 8(3), 156-161. https://doi.org/10.2514/3.44247.
- Williamson, C.H.K. and Govardhan, R. (2004), "Vortex-induced vibrations", Annu. Rev. Fluid Mech., 36, 413-455. https://doi.org/10.1146/annurev.fluid.36.050802.122128.
- Yaniktepe, B. and Rockwell, D. (2004), "Flow structure on a Delta Wing of low sweep angle", AIAA J., 42(3), 513-523. https://doi.org/10.2514/1.1207.
- Yaniktepe, B. and Rockwell, D. (2005), "Flow structure on diamond and lambda planforms: trailing-edge region", AIAA J., 43(7), 1490-1500. https://doi.org/10.2514/1.7618.
- Yayla, S., Canpolat, C . Sahin, B. and Akilli, H. (2010), "Yaw angle effect on flow structure over the nonslender diamond wing", AIAA J., 48(10), 2457-2461. https://doi.org/10.2514/1.J050380.
- Yayla, S., Canpolat, C., Sahin, B. and Akilli, H. (2013), "The effect of angle of attack on the flow structure over the nonslender lambda wing", Aerosp. Sci. Technol., 28(1), 417-430. https://doi.org/10.1016/j.ast.2012.12.007.
- Ye, J. and Dong, X. (2014), "Improvement and validation of a flow model for conical vortices", Wind Struct., 19(2), 113-144. https://doi.org/10.12989/was.2014.19.2.113.
- Zharfa, M., Ozturk, I. and Yavuz, M.M. (2016), "Flow structure on Nonslender delta wing: Reynolds number dependence and flow control", AIAA J., Vol. 54(3), 880-897. https://doi.org/10.2514/1.J054495.
Cited by
- Comparison of aerodynamic performances of various airfoils from different airfoil families using CFD vol.32, pp.3, 2020, https://doi.org/10.12989/was.2021.32.3.239
- Near-surface particle image velocimetry measurements over a yawed slender delta wing vol.235, pp.16, 2020, https://doi.org/10.1177/0954410021999556