DOI QR코드

DOI QR Code

Influence of non-Gaussian characteristics of wind load on fatigue damage of wind turbine

  • Zhu, Ying (Railway Engineering Research Institute, China Academy of Railway Sciences Corporation Limited) ;
  • Shuang, Miao (State Nuclear Electric Power Planning Design & Research Institute Corporation Limited)
  • 투고 : 2019.09.05
  • 심사 : 2020.03.09
  • 발행 : 2020.09.25

초록

Based on translation models, both Gaussian and non-Gaussian wind fields are generated using spectral representation method for investigating the influence of non-Gaussian characteristics and directivity effect of wind load on fatigue damage of wind turbine. Using the blade aerodynamic model and multi-body dynamics, dynamic responses are calculated. Using linear damage accumulation theory and linear crack propagation theory, crack initiation life and crack propagation life are discussed with consideration of the joint probability density distribution of the wind direction and mean wind speed in detail. The result shows that non-Gaussian characteristics of wind load have less influence on fatigue life of wind turbine in the area with smaller annual mean wind speeds. Whereas, the influence becomes significant with the increase of the annual mean wind speed. When the annual mean wind speeds are 7 m/s and 9 m/s at hub height of 90 m, the crack initiation lives under softening non-Gaussian wind decrease by 10% compared with Gaussian wind fields or at higher hub height. The study indicates that the consideration of the influence of softening non-Gaussian characteristics of wind inflows can significantly decrease the fatigue life, and, if neglected, it can result in non-conservative fatigue life estimates for the areas with higher annual mean wind speeds.

키워드

과제정보

The authors are grateful for the financial support received from science and technology research project of China railway corporation (No. 2017G006-A) and foundation project of China academy of railway sciences (No. 2018YJ048).

참고문헌

  1. Benasciutti, D. and Tovo, R. (2006), "Comparison of spectral methods for fatigue analysis of broad-band Gaussian random processes"; Probabilist. Eng. Mech., 21(4), 287-299. https://doi.org/10.1016/j.probengmech.2005.10.003.
  2. Benasciutti, D. and Tovo, R. (2006), "Fatigue life assessment in non-Gaussian random loadings"; Int. J. Fatigue, 28(7), 733-746. https://doi.org/10.1016/j.ijfatigue.2005.09.006.
  3. Binh, L., Ishihara, T., Phuc, P. and Fujino, Y. (2008), "A peak factor for non-Gaussian response analysis of wind turbine tower"; J. Wind Eng. Ind. Aerod., 96(10-11), 2217-2227. https://doi.org/10.1016/j.jweia.2008.02.019.
  4. Braccesi, C., Cianetti, F., Lori, G. and Pioli, D. (2015), "Random Multiaxial Fatigue: a comparative analysis among selected frequency and time domain fatigue evaluation methods"; Int. J. Fatigue, 74, 107-118. https://doi.org/10.1016/j.ijfatigue.2015.01.003.
  5. Chen, X. (2014), "Analysis of crosswind fatigue of wind-excited structures with nonlinear aerodynamic damping"; Eng. Struct., 74, 145-156. https://doi.org/10.1016/j.engstruct.2014.04.049.
  6. Chen, X. and Huang, H. (2009), "Evaluation of peak resultant response for wind-excited tall buildings"; Eng. Struct., 31(4), 858-868. https://doi.org/10.1016/j.engstruct.2008.11.021.
  7. Chou, J. and Tu, W. (2011), "Failure analysis and risk management of a collapsed large wind turbine tower"; Eng. Fail Anal., 18(1), 295-313. https://doi.org/10.1016/j.engfailanal.2010.09.008.
  8. Clifton, A. (2016), "135-m Meteorological Towers at the National Wind Technology Center"
  9. Ding, J. and Chen, X. (2015), "Fatigue damage evaluation of broad-band Gaussian and non-Gaussian wind load effects by a spectral method"; Probabilist. Eng. Mech., 41, 139-154. https://doi.org/10.1016/j.probengmech.2015.06.005.
  10. Ding, J. and Chen, X. (2015), "Moment-based translation model for hardening non-Gaussian response processes"; J. Eng. Mech., 142(2), 6015006. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000986.
  11. Ding, J., Chen, X., Zuo, D. and Hua, J. (2016), "Fatigue life assessment of traffic-signal support structures from an analytical approach and long-term vibration monitoring data"; J. Struct. Eng., 142(6), 04016017. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001475.
  12. Ding, J., Gong, K. and Chen, X. (2013), "Comparison of statistical extrapolation methods for the evaluation of long-term extreme response of wind turbine"; Eng. Struct., 57, 100-115. https://doi.org/10.1016/j.engstruct.2013.09.017.
  13. Do, T., Lindt, J. and Mahmoud, H. (2015), "Fatigue Life Fragilities and Performance-Based Design of Wind Turbine Tower Base Connections"; J. Struct. Eng., 141(7), 04014183. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001150.
  14. Dowling, N. (2004), Mechanical Behavior of Materials, Pearson Prentice Hall, Harlow, England.
  15. Fragoulis, A. (1997), "The complex terrain wind environment and its effects on the power output and loading of wind turbines", 35th Aerospace Sciences Meeting and Exhibit.
  16. Frandsen, S., Jorgensen, H.E. and Sorensen, J.D. (2008), "Relevant criteria for testing the quality of models for turbulent wind speed fluctuations"; J. Sol. Engerg-T ASME, 130(3), 031016. https://doi.org/10.1115/1.2931511.
  17. Gong, K. and Chen, X. (2014), "Influence of non-Gaussian wind characteristics on wind turbine extreme response"; Eng. Struct., 59, 727-744. https://doi.org/10.1016/j.engstruct.2013.11.029.
  18. Grigoriu, M. (1984), "Crossings of non-Gaussian translation processes"; J. Eng. Mech., 110(4), 10-620. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:4(610).
  19. Hui, Y., Li, B., Kawai, H. and Yang, Q. (2017), "Non-stationary and non-Gaussian characteristics of wind speeds", Wind Struct., 24(1), 59-78. http://dx.doi.org/10.12989/was.2017.24.1.05.
  20. IEC61400-1 (2005), Wind turbines - part 1: Design requirements, International Electrotechnical Commission; Geneva, Switzerland.
  21. Ilhan, A., Bilgili, M. and Sahin, B. (2018), "Analysis of aerodynamic characteristics of 2 MW horizontal axis large wind turbine", Wind Struct., 27(3), 187-197. http://dx.doi.org/10.12989/was.2018.27.3.187.
  22. Jonkman, B. and Jonkman, J. (2005), "FAST user's guide", National Renewable Energy Laboratory, Colorado.
  23. Jonkman, J., Butterfield, S., Musial, W. and Scott, G. (2009), "Definition of a 5MW reference wind turbine for offshore system development", National Renewable Energy Laboratory, Colorado.
  24. Kareem, A. and Zhao, J. (1994), "Analysis of non-Gaussian surge response of tension leg platforms under wind loads"; J. Offshore Mech. Arct. Eng., 116(3), 137-144. http://doi.org/10.1115/1.2920142.
  25. Ke, S.T., Wang, X.H., and Ge, Y.J. (2019), "Wind load and windinduced effect of the large wind turbine tower-blade system considering blade yaw and interference", Wind Struct., 28(2), 71-87. http://dx.doi.org/10.12989/was.2019.28.2.071.
  26. Kwon, D. and Kareem, A. (2011), "Peak factors for non-Gaussian load effects revisited"; J. Struct. Eng., 137(12), 1611-1619. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000412.
  27. Larsen, T. and Hansen, A. (2005), "How 2 HAWC2 the user's manual", Wind Energy Division.
  28. Leishman, J.G. (1989), "Modeling Sweep Effects on Dynamic Stall" J. Am. Helicopter Soc., 34(3), 18-29. https://doi.org/10.4050/JAHS.34.3.18.
  29. Leishman, J.G. (2000), Principles of Helicopter Aerodynamics, Cambridge University Press, Cambridge, U.K.
  30. Leishman, J.G. and Beddoes, T.S. (1989), "A Semi-Empirical Model for Dynamic Stall" J. Am. Helicopter Soc., 34 (3), 3-17. https://doi.org/10.4050/JAHS.34.3.3.
  31. Lutes, L. and Sarkani, S. (2004), Random Vibrations: Analysis of Structural and Mechanical Systems, Elsevier Inc, Burlington, Vermont, U.S.A.
  32. Lynn, B. and Stathopoulos, T. (1985), "Wind-induced fatigue on low metal buildings", J. Struct. Eng., 111(4), 826-839. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(826).
  33. Nielsen, M., Larsen, G., Mann, J., Ott, S., Hansen, S. and Pedersen, B. (2004), "Wind simulation for extreme and fatigue loads", Riso-R-1437(EN), Riso National Lab, Denmark.
  34. Nieslony, A. (2009), "Determination of fragments of multiaxial service loading strongly influencing the fatigue of machine components", Mech. Syst. Signal Pr., 23(8), 2712-2721. https://doi.org/10.1016/j.ymssp.2009.05.010.
  35. Pagnini, L. and Repetto M.P. (2012), "The role of parameter uncertainties in the damage prediction of the alongwind-induced fatigue"; J. Wind Eng. Ind. Aerod., 104-106, 227-238. https://doi.org/10.1016/j.jweia.2012.03.027.
  36. Repetto, M. and Solari, G. (2004), "Directional wind-induced fatigue of slender vertical structures", J. Struct. Eng., 130(7), 1032-1040. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:7(1032).
  37. Repetto, M. and Solari, G. (2012), "Closed-form prediction of the alongwind-induced fatigue of structures"; J. Struct. Eng., 138(9), 1149-1160. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000543.
  38. Robertson, A., Holmes, J. and Smith, B.W. (2004), "Verification of closed-form solutions of fatigue life under along-wind loading", Eng. Struct., 26(10), 1381-1387. https://doi.org/10.1016/j.engstruct.2004.05.004.
  39. Rossi, R., Lazzari, M., and Vitaliani, R. (2004), "Wind field simulation for structural engineering purposes"; Int. J. Numer. Meth. Eng., 61(5), 738-763. https://doi.org/10.1002/nme.1083.
  40. Shuang, M. and Song, B. (2018), "Reliability analysis of wind turbines under non-Gaussian wind load", Struct. Des. Tall Spec., 27(3), 1-17. https://doi.org/10.1002/tal.1443.
  41. Solari, G. (2002), "The role of analytical methods for evaluating the wind-induced response of structures", J. Struct. Eng., 90, 12-15. https://doi.org/10.1016/S0167-6105(02)00264-7.
  42. Winterstein S., Ede, T. and Kleiven, G. (1994), "Springing and slow-drift responses: predicted extremes and fatigue vs. simulation", BOSS-94, Cambridge.
  43. Winterstein, S. (1988), "Nonlinear vibration models for extremes and fatigue", J. Eng. Mech., 114(10), 1772-1790. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:10(1772).
  44. Xu, Y. (1995), "Model-and full-scale comparison of fatigue-related characteristics of wind pressures on the Texas Tech building", J. Wind Eng. Ind. Aerod., 58(3), 147-173. https://doi.org/10.1016/0167-6105(95)00012-7.
  45. Zhu, Y. and Tian, Y. (2018), "Fatigue Life Evaluation of Linear Structures with Uncertain-But-Bounded Parameters Under Stochastic Excitations"; Int. J. Struct. Stab. Dy., 18(3), 1850045. https://doi.org/10.1142/S0219455418500451.