DOI QR코드

DOI QR Code

Human Norovirus Replication in Temperature-Optimized MDCK Cells by Forkhead Box O1 Inhibition

  • Jeong, Eun-Hye (Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University) ;
  • Cho, Se-Young (Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University) ;
  • Vaidya, Bipin (Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University) ;
  • Ha, Sang Hoon (Division of Biotechnology, Chonbuk National University) ;
  • Jun, Sangmi (Biological Disaster Analysis Group, Korea Basic Science Institute) ;
  • Ro, Hyun-Joo (Biological Disaster Analysis Group, Korea Basic Science Institute) ;
  • Lee, Yujeong (Korea Basic Science Institute) ;
  • Lee, Juhye (Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University) ;
  • Kwon, Joseph (Biological Disaster Analysis Group, Korea Basic Science Institute) ;
  • Kim, Duwoon (Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University)
  • Received : 2020.03.31
  • Accepted : 2020.06.03
  • Published : 2020.09.28

Abstract

Human noroviruses (HuNoVs) are a leading cause of gastroenteritis outbreaks worldwide. However, the paucity of appropriate cell culture models for HuNoV replication has prevented developing effective anti-HuNoV therapies. In this study, first, the replication of the virus at various temperatures in different cells was compared, which showed that lowering the culture temperature from 37℃ significantly increased virus replication in Madin-Darby canine kidney (MDCK) cells. Second, the expression levels of autophagy-, immune-, and apoptosis-related genes at 30℃ and 37℃ were compared to explore factors affecting HuNoV replication. HuNoV cultured at 37℃ showed significantly increased autophagy-related genes (ATG5 and ATG7) and immune-related genes (IFNA, IFNB, ISG15, and NFKB) compared to mock. However, the virus cultured at 30℃ showed significantly decreased expression of autophagy-related genes (ATG5 and ATG7), but not significantly different major immune-related genes (IFNA, ISG15, and NFKB) compared to mock. Importantly, expression of the transcription factor FOXO1, which controls autophagy- and immune-related gene expression, was significantly lower at 30℃. Moreover, FOXO1 inhibition in temperature-optimized MDCK cells enhanced HuNoV replication, highlighting FOXO1 inhibition as an approach for successful virus replication. In the temperature-optimized cells, various HuNoV genotypes were successfully replicated, with GI.8 showing the highest replication levels followed by GII.1, GII.3, and GII.4. Furthermore, ultrastructural analysis of the infected cells revealed functional HuNoV replication at low temperature, with increased cellular apoptosis and decreased autophagic vacuoles. In conclusion, temperature-optimized MDCK cells can be used as a convenient culture model for HuNoV replication by inhibiting FOXO1 and providing adaptability to different genotypes.

Keywords

References

  1. Vinje J. 2015. Advances in laboratory methods for detection and typing of norovirus. J Clin. Microbiol. 53: 373-381. https://doi.org/10.1128/JCM.01535-14
  2. Karst SM. 2010. Pathogenesis of noroviruses, emerging RNA viruses. Viruses 2: 748-781. https://doi.org/10.3390/v2030748
  3. Lopman BA, Steele D, Kirkwood CD, Parashar UD. 2016. The vast and varied global burden of norovirus: Prospects for prevention and control. PLoS Med. 13: e1001999. https://doi.org/10.1371/journal.pmed.1001999
  4. Duizer E, Schwab KJ, Neill FH, Atmar RL, Koopmans MP, Estes MK. 2004. Laboratory efforts to cultivate noroviruses. J. Gen. Virol. 85: 79-87. https://doi.org/10.1099/vir.0.19478-0
  5. Lay MK, Atmar RL, Guix S, Bharadwaj U, He H, Neill FH, et al. 2010. Norwalk virus does not replicate in human macrophages or dendritic cells derived from the peripheral blood of susceptible humans. Virology 406: 1-11. https://doi.org/10.1016/j.virol.2010.07.001
  6. Papafragkou E, Hewitt J, Park GW, Greening G, Vinje J. 2013. Challenges of culturing human norovirus in three-dimensional organoid intestinal cell culture models. PLoS One 8: e63485. https://doi.org/10.1371/journal.pone.0063485
  7. Takanashi S, Saif LJ, Hughes JH, Meulia T, Jung K, Scheuer KA, et al. 2014. Failure of propagation of human norovirus in intestinal epithelial cells with microvilli grown in three-dimensional cultures. Arch. Virol. 159: 257-266. https://doi.org/10.1007/s00705-013-1806-4
  8. Ettayebi K, Crawford SE, Murakami K, Broughman JR, Karandikar U, Tenge VR, et al. 2016. Replication of human noroviruses in stem cell-derived human enteroids. Science 353: 1387-1393. https://doi.org/10.1126/science.aaf5211
  9. Jones MK, Grau KR, Costantini V, Kolawole AO, de Graaf M, Freiden P, et al. 2015. Human norovirus culture in B cells. Nat. Protoc. 10: 1939-1947. https://doi.org/10.1038/nprot.2015.121
  10. Jones MK, Watanabe M, Zhu S, Graves CL, Keyes LR, Grau KR, et al. 2014. Enteric bacteria promote human and mouse norovirus infection of B cells. Science 346: 755-759. https://doi.org/10.1126/science.1257147
  11. Han L, Tan M, Xia M, Kitova EN, Jiang X, Klassen JS. 2014. Gangliosides are ligands for human noroviruses. J. Am. Chem. Soc. 136: 12631-12637. https://doi.org/10.1021/ja505272n
  12. Castro R, Fernandes P, Laske T, Sousa MFQ, Genzel Y, Scharfenberg K, et al. 2015. Production of canine adenovirus type 2 in serumfree suspension cultures of MDCK cells. Appl. Microbiol. Biotechnol. 99: 7059-7068. https://doi.org/10.1007/s00253-015-6636-8
  13. Lin S-C, Kappes MA, Chen M-C, Lin C-C, Wang TT. 2017. Distinct susceptibility and applicability of MDCK derivatives for influenza virus research. PLoS One 12: e0172299. https://doi.org/10.1371/journal.pone.0172299
  14. Schultze B, Herrler G. 1995. Polarized entry of bovine coronavirus in epithelial cells, pp. 375-378. In P.J. Talbot and G. A. Levy (eds.), Corona-and Related Viruses, Springer, Boston, MA
  15. Takada K, Kawakami C, Fan S, Chiba S, Zhong G, Gu C, et al. 2019. A humanized MDCK cell line for the efficient isolation and propagation of human influenza viruses. Nat. Microbiol. 4: 1268-1273. https://doi.org/10.1038/s41564-019-0433-6
  16. Summa M, von Bonsdorff C-H, Maunula L. 2012. Pet dogs-A transmission route for human noroviruses? J. Clin. Virol. 53: 244-247. https://doi.org/10.1016/j.jcv.2011.12.014
  17. Boonarkart C, Suptawiwat O, Sakorn K, Puthavathana P, Auewarakul P. 2017. Exposure to cold impairs interferon-induced antiviral defense. Arch. Virol. 162: 2231-2237. https://doi.org/10.1007/s00705-017-3334-0
  18. Dalton RM, Mullin AE, Amorim MJ, Medcalf E, Tiley LS, Digard P. 2006. Temperature sensitive influenza A virus genome replication results from low thermal stability of polymerase-cRNA complexes. Virol. J. 3: 58. https://doi.org/10.1186/1743-422X-3-58
  19. Prow NA, Tang B, Gardner J, Le TT, Taylor A, Poo YS, et al. 2017. Lower temperatures reduce type I interferon activity and promote alphaviral arthritis. PLoS Pathog. 13: e1006788. https://doi.org/10.1371/journal.ppat.1006788
  20. Foxman EF, Storer JA, Fitzgerald ME, Wasik BR, Hou L, Zhao H, et al. 2015. Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells. Proc. Natl. Acad. Sci. USA 112: 827-832. https://doi.org/10.1073/pnas.1411030112
  21. Lei C-Q, Zhang Y, Xia T, Jiang L-Q, Zhong B, Shu H-B. 2013. FOXO1 negatively regulates cellular antiviral response by promoting degradation of IRF3. J. Biol. Chem. 288: 12596-12604. https://doi.org/10.1074/jbc.M112.444794
  22. Shlomai A, Shaul Y. 2009. The metabolic activator FOXO1 binds hepatitis B virus DNA and activates its transcription. Biochem. Biophys. Res. Commun. 381: 544-548. https://doi.org/10.1016/j.bbrc.2009.02.078
  23. Yoo JE, Lee C, Park S, Ko G. 2017. Evaluation of various real-time reverse transcription quantitative PCR assays for norovirus detection. J. Microbiol. Biotechnol. 27: 816-824. https://doi.org/10.4014/jmb.1612.12026
  24. Straub TM, Hutchison JR, Bartholomew RA, Valdez CO, Valentine NB, Dohnalkova A, et al. 2013. Defining cell culture conditions to improve human norovirus infectivity assays. Water Sci. Technol. 67: 863-868. https://doi.org/10.2166/wst.2012.636
  25. Atmar RL, Ramani S, Estes MK. 2018. Human noroviruses: recent advances in a 50-year history. Curr. Opin. Infect. Dis. 31: 422-432. https://doi.org/10.1097/QCO.0000000000000476
  26. Shibutani ST, Saitoh T, Nowag H, Münz C, Yoshimori T. 2015. Autophagy and autophagy-related proteins in the immune system. Nat. Immunol. 16: 1014. https://doi.org/10.1038/ni.3273
  27. Yordy B, Tal MC, Hayashi K, Arojo O, Iwasaki A. 2013. Autophagy and selective deployment of Atg proteins in antiviral defense. Int. Immunol. 25: 1-10. https://doi.org/10.1093/intimm/dxs101
  28. Dejean AS, Hedrick SM, Kerdiles YM. 2011. Highly specialized role of Forkhead box O transcription factors in the immune system. Antioxid. Redox Signal. 14: 663-674. https://doi.org/10.1089/ars.2010.3414
  29. Sengupta A, Molkentin JD, Yutzey KE. 2009. FOXO transcription factors promote autophagy in cardiomyocytes. J. Biol. Chem. 284: 28319-28331. https://doi.org/10.1074/jbc.M109.024406
  30. Trinite B, Chan CN, Lee CS, Mahajan S, Luo Y, Muesing MA, et al. 2014. Suppression of FOXO1 activity and down-modulation of CD62L (L-Selectin) in HIV-1 infected resting CD4 T cells. PLoS One 9: e110719. https://doi.org/10.1371/journal.pone.0110719
  31. Martinet W, Timmermans J-P, De Meyer GR. 2014. Methods to assess autophagy in situ-transmission electron microscopy versus immunohistochemistry, pp. 89-114. In L. Galluzzi and G. Kroemer (eds.) Methods in Enzymology, Elsevier, Oxford, UK.
  32. Jackson WT, Giddings TH, Jr., Taylor MP, Mulinyawe S, Rabinovitch M, Kopito RR, et al. 2005. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol. 3: e156. https://doi.org/10.1371/journal.pbio.0030156
  33. Almand EA, Moore MD, Jaykus L-A. 2017. Norovirus binding to ligands beyond histo-blood group antigens. Front. Microbiol. 8: 2549. https://doi.org/10.3389/fmicb.2017.02549
  34. Lindesmith LC, Donaldson EF, LoBue AD, Cannon JL, Zheng D-P, Vinje J, et al. 2008. Mechanisms of GII.4 norovirus persistence in human populations. PLoS Med. 5: e31. https://doi.org/10.1371/journal.pmed.0050031
  35. Costantini V, Morantz EK, Browne H, Ettayebi K, Zeng X-L, Atmar RL, et al. 2018. Human norovirus replication in human intestinal enteroids as model to evaluate virus inactivation. Emerg. Infect. Dis. 24: 1453-1464. https://doi.org/10.3201/eid2408.180126
  36. Nardacci R, Amendola A, Ciccosanti F, Corazzari M, Esposito V, Vlassi C, et al. 2014. Autophagy plays an important role in the containment of HIV-1 in nonprogressor-infected patients. Autophagy 10: 1167-1178. https://doi.org/10.4161/auto.28678
  37. Choi Y, Bowman JW, Jung JU. 2018. Autophagy during viral infection - a double-edged sword. Nat. Rev. Microbiol. 16: 341-354. https://doi.org/10.1038/s41579-018-0003-6
  38. De Leo A, Colavita F, Ciccosanti F, Fimia GM, Lieberman PM, Mattia E. 2015. Inhibition of autophagy in EBV-positive Burkitt's lymphoma cells enhances EBV lytic genes expression and replication. Cell Death Dis. 6: e1876.
  39. Orvedahl A, MacPherson S, Sumpter Jr R, Talloczy Z, Zou Z, Levine B. 2010. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe. 7: 115-127. https://doi.org/10.1016/j.chom.2010.01.007
  40. Sagnier S, Daussy CF, Borel S, Robert-Hebmann V, Faure M, Blanchet FP, et al. 2015. Autophagy restricts HIV-1 infection by selectively degrading Tat in CD4+ T lymphocytes. J. Virol. 89: 615-625. https://doi.org/10.1128/JVI.02174-14
  41. Yordy B, Iijima N, Huttner A, Leib D, Iwasaki A. 2012. A neuron-specific role for autophagy in antiviral defense against herpes simplex virus. Cell Host Microbe. 12: 334-345. https://doi.org/10.1016/j.chom.2012.07.013
  42. Buckingham EM, Jarosinski KW, Jackson W, Carpenter JE, Grose C. 2016. Exocytosis of varicella-zoster virus virions involves a convergence of endosomal and autophagy pathways. J. Virol. 90: 8673-8685. https://doi.org/10.1128/JVI.00915-16
  43. Fang Y-T, Wan S-W, Lu Y-T, Yao J-H, Lin C-F, Hsu L-J, et al. 2014. Autophagy facilitates antibody-enhanced dengue virus infection in human pre-basophil/mast cells. PLoS One 9: e110655. https://doi.org/10.1371/journal.pone.0110655
  44. Wang L, Tian Y, Ou J-hJ. 2015. HCV induces the expression of rubicon and UVRAG to temporally regulate the maturation of autophagosomes and viral replication. PLoS Pathog. 11: e1004764. https://doi.org/10.1371/journal.ppat.1004764
  45. Zhou Z, Jiang X, Liu D, Fan Z, Hu X, Yan J, et al. 2009. Autophagy is involved in influenza A virus replication. Autophagy 5: 321-328. https://doi.org/10.4161/auto.5.3.7406
  46. Hwang S, Maloney NS, Bruinsma MW, Goel G, Duan E, Zhang L, et al. 2012. Nondegradative role of Atg5-Atg12/Atg16L1 autophagy protein complex in antiviral activity of interferon gamma. Cell Host Microbe. 11: 397-409. https://doi.org/10.1016/j.chom.2012.03.002
  47. Samuel CE. 2001. Antiviral actions of interferons. Clin. Microbiol. Rev. 14: 778-809. https://doi.org/10.1128/CMR.14.4.778-809.2001
  48. Frensing T, Seitz C, Heynisch B, Patzina C, Kochs G, Reichl U. 2011. Efficient influenza B virus propagation due to deficient interferon-induced antiviral activity in MDCK cells. Vaccine 29: 7125-7129. https://doi.org/10.1016/j.vaccine.2011.05.069
  49. Seitz C, Frensing T, Höper D, Kochs G, Reichl U. 2010. High yields of influenza A virus in Madin-Darby canine kidney cells are promoted by an insufficient interferon-induced antiviral state. J. Gen. Virol. 91: 1754-1763. https://doi.org/10.1099/vir.0.020370-0
  50. Perng Y-C, Lenschow DJ. 2018. ISG15 in antiviral immunity and beyond. Nat. Rev. Microbiol. 16: 423-439. https://doi.org/10.1038/s41579-018-0020-5
  51. Rodriguez MR, Monte K, Thackray LB, Lenschow DJ. 2014. ISG15 functions as an interferon-mediated antiviral effector early in the murine norovirus life cycle. J. Virol. 88: 9277-9286. https://doi.org/10.1128/JVI.01422-14
  52. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. 2011. The pro-and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta 1813: 878-888. https://doi.org/10.1016/j.bbamcr.2011.01.034
  53. Lenschow DJ, Lai C, Frias-Staheli N, Giannakopoulos NV, Lutz A, Wolff T, et al. 2007. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc. Natl. Acad. Sci. USA 104: 1371-1376. https://doi.org/10.1073/pnas.0607038104
  54. Beachboard DC, Horner SM. 2016. Innate immune evasion strategies of DNA and RNA viruses. Curr. Opin. Microbiol. 32: 113-119. https://doi.org/10.1016/j.mib.2016.05.015
  55. Rahman MM, McFadden G. 2011. Modulation of $NF-{\kappa}B$ signalling by microbial pathogens. Nat. Rev. Microbiol. 9: 291. https://doi.org/10.1038/nrmicro2539
  56. Zhao J, He S, Minassian A, Li J, Feng P. 2015. Recent advances on viral manipulation of $NF-{\kappa}B$ signaling pathway. Curr. Opin. Virol. 15: 103-111. https://doi.org/10.1016/j.coviro.2015.08.013
  57. Bitzer M, Prinz F, Bauer M, Spiegel M, Neubert WJ, Gregor M, et al. 1999. Sendai virus infection induces apoptosis through activation of caspase-8 (FLICE) and caspase-3 (CPP32). J. Virol. 73: 702-708. https://doi.org/10.1128/JVI.73.1.702-708.1999
  58. Ye X, Zhou X-J, Zhang H. 2018. Exploring the role of autophagy-related gene 5 (ATG5) yields important insights into autophagy in autoimmune/autoinflammatory diseases. Front. Immunol. 9: 2334. https://doi.org/10.3389/fimmu.2018.02334
  59. Bok K, Prikhodko VG, Green KY, Sosnovtsev SV. 2009. Apoptosis in murine norovirus-infected RAW264.7 cells is associated with downregulation of survivin. J. Virol. 83: 3647-3656. https://doi.org/10.1128/JVI.02028-08
  60. Gao R, Li T, Tan B, da Silva SR, Jung JU, Feng P, et al. 2019. FOXO1 suppresses Kaposi's sarcoma-associated herpesvirus lytic replication and controls viral latency. J. Virol. 93: e01681-18.
  61. Roux A, Leroy H, De Muylder B, Bracq L, Oussous S, Dusanter-Fourt I, et al. 2019. FOXO1 transcription factor plays a key role in T cell-HIV-1 interaction. PLoS Pathog. 15: e1007669. https://doi.org/10.1371/journal.ppat.1007669
  62. Xing Y-q, Li A, Yang Y, Li X-x, Zhang L-n, Guo H-c. 2018. The regulation of FOXO1 and its role in disease progression. Life Sci. 193: 124-131. https://doi.org/10.1016/j.lfs.2017.11.030