DOI QR코드

DOI QR Code

Deficiencies of Homer2 and Homer3 accelerate aging-dependent bone loss in mice

  • Kang, Jung Yun (Department of Oral Biology, Yonsei University College of Dentistry) ;
  • Kang, Namju (Department of Oral Biology, Yonsei University College of Dentistry) ;
  • Shin, Dong Min (Department of Oral Biology, Yonsei University College of Dentistry) ;
  • Yang, Yu-Mi (Department of Oral Biology, Yonsei University College of Dentistry)
  • 투고 : 2020.08.10
  • 심사 : 2020.08.20
  • 발행 : 2020.09.30

초록

Homer proteins are scaffold proteins that regulate calcium (Ca2+) signaling by modulating the activity of multiple Ca2+ signaling proteins. In our previous report, Homer2 and Homer3 regulated NFATc1 function through its interaction with calcineurin, which then acted to regulate receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone metabolism. However, to date, the role of Homers in osteoclastogenesis remains unknown. In this study, we investigated the roles of Homer2 and Homer3 in aging-dependent bone remodeling. Deletion of Homer2/Homer3 (Homer2/3 DKO) markedly decreased the bone density of the femur. The decrease in bone density was not seen in mice with Homer2 (Homer2-/-) and Homer3 (Homer3-/-) deletion. Moreover, RANKL treatment of bone marrow-derived monocytes/macrophages in Homer2/3 DKO mice significantly increased the formation of multinucleated cells and resorption areas. Finally, Homer2/3 DKO mice decreased bone density in an aging-dependent manner. These findings suggest a novel potent mode of bone homeostasis regulation through osteoclasts differentiation during aging by Homer proteins, specifically Homer2 and Homer3.

키워드

참고문헌

  1. Lerner UH. Bone remodeling in post-menopausal osteoporosis. J Dent Res 2006;85:584-95. doi: 10.1177/154405910608500703.
  2. Takayanagi H. The role of NFAT in osteoclast formation. Ann N Y Acad Sci 2007;1116:227-37. doi: 10.1196/annals.1402.071.
  3. Zaidi M. Skeletal remodeling in health and disease. Nat Med 2007;13:791-801. doi: 10.1038/nm1593.
  4. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 2002;3:889-901. doi: 10.1016/s1534-5807(02)00369-6.
  5. Luo X, Popov S, Bera AK, Wilkie TM, Muallem S. RGS proteins provide biochemical control of agonist-evoked [Ca2+]i oscillations. Mol Cell 2001;7:651-60. doi: 10.1016/s1097-2765(01)00211-8.
  6. Keinan D, Yang S, Cohen RE, Yuan X, Liu T, Li YP. Role of regulator of G protein signaling proteins in bone. Front Biosci (Landmark Ed) 2014;19:634-48. doi: 10.2741/4232.
  7. Bodnar D, Chung WY, Yang D, Hong JH, Jha A, Muallem S. STIM-TRP Pathways and microdomain organization: $Ca^{2+}$ influx channels: the Orai-STIM1-TRPC complexes. Adv Exp Med Biol 2017;993:139-57. doi: 10.1007/978-3-319-57732-6_8.
  8. Kiselyov K, Wang X, Shin DM, Zang W, Muallem S. Calcium signaling complexes in microdomains of polarized secretory cells. Cell Calcium 2006;40:451-9. doi: 10.1016/j.ceca.2006.08.009.
  9. Park B, Yang YM, Choi BJ, Kim MS, Shin DM. Activation of G proteins by aluminum fluoride enhances RANKL-mediated osteoclastogenesis. Korean J Physiol Pharmacol 2013;17:427-33. doi: 10.4196/kjpp.2013.17.5.427.
  10. Son A, Kim MS, Jo H, Byun HM, Shin DM. Effects of inositol 1,4,5-triphosphate on osteoclast differentiation in RANKL-induced osteoclastogenesis. Korean J Physiol Pharmacol 2012;16:31-6. doi: 10.4196/kjpp.2012.16.1.31.
  11. Kim MS, Yang YM, Son A, Tian YS, Lee SI, Kang SW, Muallem S, Shin DM. RANKL-mediated reactive oxygen species pathway that induces long lasting $Ca^{2+}$ oscillations essential for osteoclastogenesis. J Biol Chem 2010;285:6913-21. doi: 10.1074/jbc.M109.051557.
  12. Ong EC, Nesin V, Long CL, Bai CX, Guz JL, Ivanov IP, Abramowitz J, Birnbaumer L, Humphrey MB, Tsiokas L. A TRPC1 protein-dependent pathway regulates osteoclast formation and function. J Biol Chem 2013;288:22219-32. doi: 10.1074/jbc.M113.459826.
  13. Yang YM, Kim MS, Son A, Hong JH, Kim KH, Seo JT, Lee SI, Shin DM. Alteration of RANKL-induced osteoclastogenesis in primary cultured osteoclasts from SERCA2+/- mice. J Bone Miner Res 2009;24:1763-9. doi: 10.1359/jbmr.090420.
  14. Kim HJ, Prasad V, Hyung SW, Lee ZH, Lee SW, Bhargava A, Pearce D, Lee Y, Kim HH. Plasma membrane calcium ATPase regulates bone mass by fine-tuning osteoclast differentiation and survival. J Cell Biol 2012;199:1145-58. doi: 10.1083/jcb.201204067.
  15. Hirotani H, Tuohy NA, Woo JT, Stern PH, Clipstone NA. The calcineurin/nuclear factor of activated T cells signaling pathway regulates osteoclastogenesis in RAW264.7 cells. J Biol Chem 2004;279:13984-92. doi: 10.1074/jbc.M213067200.
  16. Takayanagi H. Mechanistic insight into osteoclast differentiation in osteoimmunology. J Mol Med (Berl) 2005;83:170-9. doi: 10.1007/s00109-004-0612-6.
  17. Bootman MD, Lipp P, Berridge MJ. The organisation and functions of local $Ca^{2+}$ signals. J Cell Sci 2001;114(Pt 12):2213-22. https://doi.org/10.1242/jcs.114.12.2213
  18. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003;4:517-29. doi: 10.1038/nrm1155.
  19. Crabtree GR, Olson EN. NFAT signaling: choreographing the social lives of cells. Cell 2002;109 Suppl:S67-79. doi: 10.1016/s0092-8674(02)00699-2.
  20. Oh-hora M, Rao A. The calcium/NFAT pathway: role in development and function of regulatory T cells. Microbes Infect 2009;11:612-9. doi: 10.1016/j.micinf.2009.04.008.
  21. Mognol GP, Carneiro FR, Robbs BK, Faget DV, Viola JP. Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player. Cell Death Dis 2016;7:e2199. doi: 10.1038/cddis.2016.97.
  22. Sun L, Blair HC, Peng Y, Zaidi N, Adebanjo OA, Wu XB, Wu XY, Iqbal J, Epstein S, Abe E, Moonga BS, Zaidi M. Calcineurin regulates bone formation by the osteoblast. Proc Natl Acad Sci U S A 2005;102:17130-5. doi: 10.1073/pnas.0508480102.
  23. Winslow MM, Pan M, Starbuck M, Gallo EM, Deng L, Karsenty G, Crabtree GR. Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev Cell 2006;10:771-82. doi: 10.1016/j.devcel.2006.04.006.
  24. Son A, Kang N, Oh SY, Kim KW, Muallem S, Yang YM, Shin DM. Homer2 and Homer3 modulate RANKL-induced NFATc1 signaling in osteoclastogenesis and bone metabolism. J Endocrinol 2019;242:241-9. doi: 10.1530/JOE-19-0123.
  25. Shanmugarajan S, Haycraft CJ, Reddy SV, Ries WL. NIP45 negatively regulates RANK ligand induced osteoclast differentiation. J Cell Biochem 2012;113:1274-81. doi: 10.1002/jcb.23460.
  26. Huang GN, Huso DL, Bouyain S, Tu J, McCorkell KA, May MJ, Zhu Y, Lutz M, Collins S, Dehoff M, Kang S, Whartenby K, Powell J, Leahy D, Worley PF. NFAT binding and regulation of T cell activation by the cytoplasmic scaffolding Homer proteins. Science 2008;319:476-81. doi: 10.1126/science.1151227.
  27. GuezGuez A, Prod'homme V, Mouska X, Baudot A, Blin-Wakkach C, Rottapel R, Deckert M. 3BP2 adapter protein is required for receptor activator of NF${\kappa}$B ligand (RANKL)-induced osteoclast differentiation of RAW264.7 cells. J Biol Chem 2010;285:20952-63. doi: 10.1074/jbc.M109.091124.
  28. Foucault I, Le Bras S, Charvet C, Moon C, Altman A, Deckert M. The adaptor protein 3BP2 associates with VAV guanine nucleotide exchange factors to regulate NFAT activation by the Bcell antigen receptor. Blood 2005;105:1106-13. doi: 10.1182/blood-2003-08-2965.
  29. Brakeman PR, Lanahan AA, O'Brien R, Roche K, Barnes CA, Huganir RL, Worley PF. Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 1997;386:284-8. doi: 10.1038/386284a0.
  30. Worley PF, Zeng W, Huang G, Kim JY, Shin DM, Kim MS, Yuan JP, Kiselyov K, Muallem S. Homer proteins in $Ca^{2+}$ signaling by excitable and non-excitable cells. Cell Calcium 2007;42:363-71. doi: 10.1016/j.ceca.2007.05.007.
  31. Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeburg PH, Muallem S, Worley PF. Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 2003;114:777-89. doi: 10.1016/s0092-8674(03)00716-5.
  32. Shin DM, Dehoff M, Luo X, Kang SH, Tu J, Nayak SK, Ross EM, Worley PF, Muallem S. Homer 2 tunes G protein-coupled receptors stimulus intensity by regulating RGS proteins and PLCbeta GAP activities. J Cell Biol 2003;162:293-303. doi: 10.1083/jcb.200210109.
  33. Yang YM, Lee J, Jo H, Park S, Chang I, Muallem S, Shin DM. Homer2 protein regulates plasma membrane $Ca^{2+}$-ATPasemediated $Ca^{2+}$ signaling in mouse parotid gland acinar cells. J Biol Chem 2014;289:24971-9. doi: 10.1074/jbc.M114.577221.
  34. Stiber JA, Tabatabaei N, Hawkins AF, Hawke T, Worley PF, Williams RS, Rosenberg P. Homer modulates NFAT-dependent signaling during muscle differentiation. Dev Biol 2005;287:213-24. doi: 10.1016/j.ydbio.2005.06.030.
  35. Kim JH, Kim K, Kim I, Seong S, Jeong BC, Nam KI, Kim KK, Molkentin JD, Kim N. RCANs regulate the convergent roles of NFATc1 in bone homeostasis. Sci Rep 2016;6:38526. doi: 10.1038/srep38526.
  36. Ruegsegger C, Stucki DM, Steiner S, Angliker N, Radecke J, Keller E, Zuber B, Ruegg MA, Saxena S. Impaired mTORC1-dependent expression of homer-3 influences SCA1 pathophysiology. Neuron 2016;89:129-46. doi: 10.1016/j.neuron.2015.11.033.
  37. Huynh H, Wan Y. mTORC1 impedes osteoclast differentiation via calcineurin and NFATc1. Commun Biol 2018;1:29. doi: 10.1038/s42003-018-0028-4.
  38. Salanova M, Bortoloso E, Schiffl G, Gutsmann M, Belavy DL, Felsenberg D, Furlan S, Volpe P, Blottner D. Expression and regulation of Homer in human skeletal muscle during neuromuscular junction adaptation to disuse and exercise. FASEB J 2011;25:4312-25. doi: 10.1096/fj.11-186049.
  39. Demontiero O, Vidal C, Duque G. Aging and bone loss: new insights for the clinician. Ther Adv Musculoskelet Dis 2012;4:61-76. doi: 10.1177/1759720X11430858.
  40. Srinivasan S, Ausk BJ, Prasad J, Threet D, Bain SD, Richardson TS, Gross TS. Rescuing loading induced bone formation at senescence. PLoS Comput Biol 2010;6:e1000924. doi: 10.1371/journal.pcbi.1000924.