DOI QR코드

DOI QR Code

Analysis on Ignition Characteristics According to the Chemical Composition of Bio Jet Fuel Synthesized by F-T Process

F-T 공정으로 합성된 바이오항공유의 화학적 조성에 따른 점화특성 분석

  • Received : 2020.06.12
  • Accepted : 2020.07.16
  • Published : 2020.09.30

Abstract

In this study, the ignition characteristics of bio jet fuel (Bio-7629, Bio-5172) produced by F-T process and petroleum-based jet fuel (Jet A-1) were compared and analyzed. The ignition delay time of each fuel was measured by means of a combustion research unit (CRU) and the results were explained through an analysis of the properties and composition of the fuel. The ignition delay time of Bio-5172 was the shortest while that of Jet A-1 was the longest because Jet A-1 had the highest surface tension and Bio-5172 had the lowest viscosity in terms of fuel properties that could affect the physical ignition delay time. As a result of the analysis of the constituents' type and ratio, 22.8% aromatic compounds in Jet A-1 could generate benzyl radical, which had low reactivity during the oxidation reaction, affecting the increase of ignition delay time. Both Bio-7629 and Bio-5172 were composed of paraffin only, with the ratio of n-/iso- being 0.06 and 0.80, respectively. The lower the degree of branching is in paraffin, the faster the isomerization of peroxy radical is produced during oxidation, which could determine the propagation rate of the ignition. Therefore, Bio-5172, composed of more n-paraffin, possesses shorter ignition delay time compared with Bio-7629.

본 연구에서는 F-T 공정을 통해 합성하여 제조한 바이오항공유(Bio-7629, Bio-5172)와 기존에 사용 중인 석유계항공유(Jet A-1)의 점화특성을 비교하여 분석하였다. Combustion research unit (CRU) 장비를 활용하여 각 항공유의 점화지연시간을 측정하였고, 그 결과를 연료의 물성 및 구성 화합물에 대한 분석을 통해 해석하고자 하였다. 점화지연시간은 Bio-5172가 가장 짧게 측정되었으며 Jet A-1이 가장 길게 측정되었다. 이는 물리적 점화지연시간에 영향을 줄 수 있는 연료의 물성 측면에서 Jet A-1이 가장 큰 표면장력을 가지며 Bio-5172가 가장 낮은 점도를 갖기 때문인 것으로 해석된다. 또한, 각 연료를 구성하는 화합물의 종류 및 비율에 대하여 분석한 결과, 실험 대상 바이오항공유에 없는 방향족화합물이 Jet A-1에는 약 22.8%의 비율로 존재함을 확인하였다. 이는 산화 과정 시에 비교적 반응성이 낮은 benzyl radical을 생성하여 점화지연시간이 길게 측정되는 데에 영향을 주는 것으로 판단된다. Bio-7629와 Bio-5172는 paraffin으로만 구성되어 있으며, n-/iso-의 값은 각각 0.06, 0.80으로 큰 차이를 보였다. 가지화 된 정도가 낮은 paraffin일수록 산화 시에 생성되는 peroxy radical의 이성질화가 빠르게 진행되어 점화의 전파속도 또한 빨라진다. 따라서 n-paraffin의 함량이 비교적 높은 Bio-5172의 경우에 점화지연시간 또한 짧게 측정된 것으로 해석된다.

Keywords

References

  1. Puppan, D., "Environmental Evaluation of Biofuels," Period Polytech. Ser. Soc. Man Sci., 10(1), 95-116 (2002).
  2. http://biofuel.org.uk/second-generation-biofuels.html (accessed June. 2019).
  3. Susan, V. D., Jack, S., Francisco, B., Deger, S., Alessandra S., and Amr, S., "Biofuels for Aviation Technology Brief," International Renewable Energy Agency, Abu Dhabi, 2-4 (2017).
  4. Fischer, F., "Fischer Tropsch Synthesis," FT_synthesis-2013_PW.pdf.
  5. Steynberg, A. P., Espinoza, R. L., Jager, B., and Vosloo, A. C., "High Temperature Fischer-Tropsch Synthesis In Commercial Practice," Appl. Catal. A: Gen., 186(1-2), 41-54 (1999). https://doi.org/10.1016/S0926-860X(99)00163-5
  6. Espinoza, R. L., Steynberg, A. P. Jager, B., and Vosloo, A. C., "Low Temperature Fischer-Tropsch Synthesis From a Sasol Perspective," Appl. Catal. A: Gen., 186(1-2), 13-26 (1999). https://doi.org/10.1016/S0926-860X(99)00161-1
  7. "Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons," American Society for Testing and Materials, (2016).
  8. John, B. H., "Internal Combustion Engine Fundamentals," McGraw-Hill Book Company, New York, 539-540 (1988).
  9. Petrukhin, N. V., Grishin, N. N., and Sergeev, S. M., "Ignition Delay Time - An Important Fuel Property," Chem. Technol. Fuels Oils, 51(6), 581-584 (2016). https://doi.org/10.1007/s10553-016-0642-0
  10. Ziliang, Z., Tamer, B., and Naeim, H., "Investigation of Physical and Chemical Delay Periods of Different Fuels in the Ignition Quality Tester," J. Eng. Gas Turbines Power, 135(6), 1-11 (2013).
  11. Vasu, S. S., Davidson, D. F., and Hanson, R. K., "Jet Fuel Ignition Delay Times: Shock Tube Experiments Over Wide Conditions And Surrogate Model Predictions," Combust. Flame, 152(1-2), 125-143 (2008). https://doi.org/10.1016/j.combustflame.2007.06.019
  12. Kang, S. B., and Jeong, B. H., "Analysis on Ignition Delay Time According to the Ratio of Bio Aviation Fuel in Jet A-1 Mixture," J. Korean Soc. Propuls. Eng., 23(2), 13-20 (2019). https://doi.org/10.6108/KSPE.2019.23.2.013
  13. "Determination of Ignition and Combustion Characteristics of Residual Fuels - Constant volume combustion chamber method," Energy Institute, (2006).
  14. http://www.spray-nozzle.co.uk/resources/engineering-resources/guide-to-spray-properties/4-droplet-size (accessed June. 2019).
  15. Gohtani, S., Sirendi, M., Yamamoto, N., Kajikawa, K., and Yamano, Y., "Effect of Droplet Size on Oxidation of Decosahexanoic Acid in Emulsion System," J. Dispersion Sci. Technol., 20(5), 1319-1325 (1999). https://doi.org/10.1080/01932699908943855
  16. Noureddini, H., Teoh, B. C., and Davis, C. L., "Viscosities of Vegetable Oils and Fatty Acids," J. Am. Oil Chem. Soc., 69(12), 1189-1191 (1992). https://doi.org/10.1007/BF02637678
  17. Shahabuddin, M., Liaquat, A. M., Masjuki, H. H., Kalam, M. A., and Mofijur, M., "Ignition Delay, Combustion and Emission Characteristics of Diesel Engine Fueled with Biodiesel," Renew. Sust. Energy Rev., 21, 623-632 (2013). https://doi.org/10.1016/j.rser.2013.01.019
  18. Jyoti, B. V. S., Naseem, M. S., and Baek, S. W., "Hypergolicity and Ignition Delay Study of Pure and Energied Ethanol Gel Fuel with Hydrogen Peroxide," Combust. Flame, 176, 318-325 (2017). https://doi.org/10.1016/j.combustflame.2016.11.018
  19. Pilling, M. J., "Low-Temperature Combustion and Autoignition, 35th ed.," Elsevier, Netherlands, 56-66 (1997).
  20. Boot, M. D., Tian, M., Hensen, E. J., and Sarathy, S. M., "Impact of Fuel Molecular Structure on Auto-Ignition Behavior-Design Rules for Future High Performance Gasolines," Prog. Energy Combust. Sci., 60, 1-25 (2017). https://doi.org/10.1016/j.pecs.2016.12.001
  21. Simmie, J. M., "Detailed Chemical Kinetic Models for the Combustion of Hydrocarbon Fuels," Prog. Energy Combust. Sci., 29(6), 599-634 (2003). https://doi.org/10.1016/S0360-1285(03)00060-1
  22. Emdee, J. L., Brezinsky, K., and Glassman, I., "A Kinetic Model for the Oxidation of Toluene Near 1200 K," J. Phys. Chem., 96(5), 2151-2161 (1992). https://doi.org/10.1021/j100184a025
  23. Rakesh, K. M., "Characteristics and Control of Low Temperature Combustion Engines: Employing Gasoline, Ethanol and Methanol," Springer International Publishing, India, (2018).