DOI QR코드

DOI QR Code

Convergence Study for Effect of Probiotics Ingestion and Aerobic Exercise with Different Intensities on Motor Learning and Bodyweight in Adolescence

유산균 섭취와 강도별 유산소 운동이 성장기 운동학습과 체중에 미치는 영향의 융합연구

  • Received : 2020.07.06
  • Accepted : 2020.09.20
  • Published : 2020.09.28

Abstract

The purpose of this study is to investigate the effects of aerobic exercise and probiotics ingestion on motor learning and body weight in female mice during adolescence. The subjects were divided into six groups of variables, such as non-exercise, moderate, high-intensity exercise, probiotics ingestion, and non-probiotics, and then treated for four weeks. The vertical grid test was conducted before and after the treatment to evaluate motor learning and bodyweight. The high-intensity exercise and probiotics ingestion group showed fastest up, rotation, and down rate than the non-exercise group (p<.001). Also, a group that treated exercise and probiotics tended to record speedier performance than those that performed the only exercise. Comparing weight changes, the weight gain of a group that performed only moderate-intensity exercise was higher than that of a non-probiotics and non-exercise group (p=.032). Taken together, aerobic exercise during adolescence can help improve motor learning, and more efficient motor learning can be achieved when combined with probiotics ingestion.

본 연구의 목적은 청소년기에서 성인기에 해당하는 암컷 생쥐를 대상으로 유산소 운동과 유산균 섭취가 운동 학습능력과 체중에 미치는 영향을 파악하는 것이다. 실험대상을 비운동, 중강도, 고강도 운동과 유산균 섭취, 비섭취 변인의 6집단으로 나누고 4주간 운동강도별 트레드밀과 유산균으로 처치하였다. 처치 전 후로 버티컬그리드 테스트를 수행하여 운동학습능력과 체중을 평가하였다. 버티컬그리드 테스트에서는 유산균을 섭취하고, 고강도 운동을 수행한 집단의 상행·회전·하행 속도가 가장 빨랐으며 운동을 하지 않은 비유산균집단과 유의한 차이를 보였다(p<.001). 운동을 하지 않은 비유산균집단이 가장 느린 수행 속도를 기록했다. 또한, 운동 수행과 유산균 섭취를 함께한 집단이 운동만 수행한 집단에 비해 빠른 수행 속도를 기록하는 경향을 보였다. 체중 변화를 비교한 결과 중강도 운동만 수행한 집단의 체중 증가는 운동을 수행하지 않은 비유산균집단의 체중 증가에 비해 유의하게 높았다(p=.032). 종합하면, 성장기의 유산소 운동은 운동학습 향상에 도움을 줄 수 있으며, 유산균 섭취와 병행하면 보다 효율적인 운동학습이 이루어질 수 있다.

Keywords

References

  1. T. W. Rowland. (2005). Children's exercise physiology- 2nd(ed). Champaign, IL: Human Kinetics.
  2. J. Y. Kim. (2014). The Study of Physical Activity Level on Serum BDNF and Cognitive Function in Adolescence. Korean Society Of Growth And Development, 22(2), 119-125. UCI : G704-001365.2014.22.2.002
  3. C. H. Hillman, K. I. Erickson & A. F. Kramer. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1), 58-65. DOI : 10.1038/nrn2298
  4. K. Lambourne & P. Tomporowski. (2010). The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Research, 23(1341), 12-24. DOI : 10.1016/j.brainres.2010.03.091
  5. T. McMorris, J. Sproule, A. Turner & B. J. Hale. (2011). Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: a meta-analytical comparison of effects. Physiology & Behavior, 102, 421-428. DOI : 10.1016/j.physbeh.2010.12.007
  6. J. Brisswalter, M. Collardeau & A. Rene. (2002). Effects of acute physical exercise characteristics on cognitive performance. Sports Medicine, 32, 555-566. DOI : 10.2165/00007256-200232090-00002
  7. K. Kashihara, T. Maruyama, M. Murota & Y. Nakahara. (2009). Positive effects of acute and moderate physical exercise on cognitive function. Journal of Physiological Anthropology, 28(4), 155-164. DOI : 10.2114/jpa2.28.155
  8. C. R. R. Alves, V. H. Tessaro, L. A. C. Teixeira, K. Murakava, H. Roschel, B. Gualano & M. Y. Takito. (2014). Influence of acute high-intensity aerobic interval exercise bout on selective attention and short-term memory tasks. Perceptual and motor skills, 118(1), 63-72. DOI : 10.2466/22.06.PMS.118k10w4
  9. C. S. Mang, N. J. Snow, K. P. Wadden, K. L. Campbell & L. A. Boyd. (2016). High intensity aerobic exercise enhances motor memory retrieval. Medicine and science in sports and exercise, 48(12), 2477-2486. DOI : 10.1249/MSS.0000000000001040
  10. J. M. Allen, L. J. Mailing & G. M. Niemiro. (2018). Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans. Medicine & Science in Sports & Exercise, 50(4), 747-757. DOI : 10.1249/MSS.0000000000001495
  11. J. Chen, Y. Guo, Y. Gui & D. Xu. (2018). Physical exercise, gut, gut microbiota, and atherosclerotic cardiovascular diseases. Lipids in Health and Disease, 17(17). DOI : 10.1186/s12944-017-0653-9
  12. M. D. Cook et al. (2015). Exercise and gut immune function: evidence of alterations in colon immune cell homeostasis and microbiome characteristics with exercise training. Immunology & Cell Biology, 94(2), 158-163. DOI : 10.1038/icb.2015.108
  13. S. Sporn, T. P. Hein & M. H. Ruiz. (2018). Bursts and variability of beta oscillations mediate the effect of anxiety on motor exploration and motor learning. bioRxiv. DOI : 10.1101/442772
  14. E. Anderson & G. Shivakumar. (2013). Effects of exercise and physical activity on anxiety. Frontiers in Psychiatry, 4(27). DOI : 10.3389/fpsyt.2013.00027
  15. M. Wegner, I. Helmich, S. Machado, A. E. Nardi, O. Arias-Carrion & H. Budde. (2014). Effects of exercise on anxiety and depression disorders: review of meta-analyses and neurobiological mechanisms. CNS Neurological Disorders, 13(6), 1002-1014. DOI : 10.2174/1871527313666140612102841
  16. L. R. McCabe, R. Irwin, L. Schaefer & R. A. Britton. (2013). Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. Journal of Cellular Physiology, 228(8), 1793-1798. DOI : 10.1002/jcp.24340
  17. J. Scheiman et al. (2019). Meta-omics analysis of elite athletes identifies a perforance enhancing microbe that functions via lactate metabolism. Nature Medicine, 25(7), 1104-1109. DOI : 10.1038/s41591-019-0485-4
  18. W. C. Huang, C. C. Wei, C. C. Huang, W. L. Chen & H. Y. Huang. (2019). The Beneficial Effects of Lactobacillus plantarum PS128 on High-Intensity, Exercise-Induced Oxidative Stress, Inflammation, and Performance in Triathletes. Nutrients, 11(2), 353. DOI : 10.3390/nu11020353
  19. A. J. Montiel-Castro, R. M. G. Cervantes, G. B. Ruiseco & G. P. Lopez. (2013). The microbiota gut brain axis: neurobehavioral correlates, health and sociality. Frontiers in Integrative neuroscience, 7(70), 1-16. DOI : 10.3389/fnint.2013.00070I.
  20. A. Marin et al. (2017). Microbiota alteration is associated with the development of stress induced despair behavior. Scientific Reports, 7, 7. DOI : 10.1038/srep43859
  21. M. L. Park. (2018). Probiotic Lactobacillus fermentum JDFM216 improves cognitive behavior and longevity by regulating immune response. Doctoral dissertation. JBNC University, Jeonju.
  22. J. Choi, Y. K. Kim & P. L. Han. (2019). Extracellular vesicles derived from Lactobacillus plantarum increase BDNF Expression in cultured hippocampal neurons and produce antidepressant like effects in mice. Experimental Neurobiology, 28(2), 158-171. DOI : 10.5607/en.2019.28.2.158
  23. Y. W. Liu et al. (2016). Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naive adult mice. Brain Resesrch. 1631, 1-12. DOI : 10.1016/j.brainres.2015.11.018
  24. J. Dhaliwal et al. (2018). Lactobacillus plantarum MTCC 9510 supplementation protects from chronic unpredictable and sleep deprivation-induced behaviour, biochemical and selected gut microbial aberrations in mice. Journal of Applied Microbiology, 125(1), 257-269. DOI : 10.1111/jam.13765
  25. J. Luo, T. Wang, S. Liang, X. Hu, W. Li & F. Jin. (2014). Ingestion of Lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat. Science China. Life Science, 57(3), 327-335. DOI : 10.1007/s11427-014-4615-4
  26. Y. Guo et al. (2019). Prophylactic Effects of Bifidobacterium adolescentis on Anxiety and Depression-Like Phenotypes After Chronic Stress: A Role of the Gut Microbiota-Inflammation Axis. Frontiers in Behavioral Neuroscience, 13(126). DOI : 10.3389/fnbeh.2019.00126
  27. N. A. Castillo, G. Perdigon & A. M. LeBlanc. (2011). Oral administration of a probiotic Lactobacillus modulates cytokine production and TLR expression improving the immune response against Salmonella enterica serovar Typhimurium infection in mice. BMC Microbiology, 11(1), 177. DOI : 10.1186/1471-2180-11-177
  28. V. Schefer & M. I. Talan. (1996). Oxygen consumption in adult and aged C57BL/6J mice during acute treadmill exercise of different intensity. Experimental Gerontology, 31(3), 387-392. DOI : 10.1016/0531-5565(95)02032-2
  29. S. T. Kim, H. J. Son, J. H. Choi, I. J. Ji & O. Y. Hwang. (2010). Vertical grid test and modified horizontal grid test are sensitive methods for evaluating motor dysfunctions in the MPTP mouse model of Parkinson's disease. Brain Research, 8(1306), 176-183. DOI : 10.1016/j.brainres.2009.09.103
  30. V. S. Valentinuzzi et al. (1998). Automated measurement of mouse freezing behavior and its use for quantitative trait locus analysis of contextual fear conditioning in (BALB/cJ x C57BL/6J)F2 mice. Learning & Memory, 5(4), 391-403.
  31. S. K. Powers, W. B. Nelson & M. B. Hudson. (2011). Exercise-induced Oxidative Stress in Humans: Cause and Consequences. Free Radical Biology and Medicine, 51(5), 942-950. DOI : 10.1016/j.freeradbiomed.2010.12.009
  32. T. Imai, S. Seki, H. Dobashi, T. Ohkawa, Y. Habu & H. Hiraide. (2002). Effect of weight loss on T-cell receptor-mediated T-cell function in elite athletes. Medicine and science in Sports and Exercise, 34(2), 245-250. DOI : 10.1097/00005768-200202000-00011
  33. T. Kullisaar, M. Zilmer, M. Mikelsaar, T. Vihalemm, H. Annuk, C. Kairane & A. Kilk. (2002). Two antioxidative lactobacilli strains as promising probiotics. International Journal of Food Microbiology, 72(3), 215-224. DOI :10.1016/s0168-1605(01)00674-2
  34. Y. M. Chen et al. (2016). Lactobacillus plantarum TWK10 Supplementation Improves Exercise Performance and Increases Muscle Mass in Mice. Nutrients, 8(4), 205. DOI : 10.3390/nu8040205
  35. J. H. Kim. (2015). Effects of Aerobic Exercise Intensity on Growth Hormone and Serotonin in Adolescent. The Korean Society Of Sports Science. 24(1), 1257-1267. UCI : G704-001369.2015.24.1.034