References
- Aydogdu, M. (2009), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Physica E, 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
- Bambill, D.V., Felix, D.H. and Rossi, R.E. (2010), "Vibration analysis of rotating Timoshenko beams by means of the differential quadrature method", Struct. Eng. Mech., 34(2), 231-245. https://doi.org/10.12989/sem.2010.34.2.231
- Bellman, R.E., Kashef, B.G., and Casti, J. (1972), "Differential quadrature: A technique for the rapid solution of nonlinear partial differential equations", J. Comput. Phys, 10(1), 40-52. https://doi.org/10.1016/0021-9991(72)90089-7.
- Bozdogan, K.B. (2012), "Differential quadrature method for free vibration analysis of coupled shear walls". Struct. Eng. Mech., 41(1), 67-81. https://doi.org/10.12989/sem.2012.41.1.067
- Cem Ece, M., Aydogdu, M., and Taskin, V. (2007), "Vibration of a variable cross section beam", Mech. Res. Comm., 34(1), 78-84. https://doi.org/10.1016/j.mechrescom.2006.06.005.
- Eringen, A.C (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer-Verlag, New York, USA.
- Garijo, D. (2015), "Free vibration analysis of non-uniform Euler-Bernoulli beams by means of Bernstein pseudo spectral collocation", Eng. Comput., 31(4), 813-823. https://doi.org/10.1007/s00366-015-0401-6
- Ghazaryan, D., Burlayenko, D., Avetisyan, V.N. and Bhaskar, A. (2017), "Free vibration analysis of functionally graded beams with non-uniform cross-section using the differential transform method", J. Eng. Math., 110(1), 97-121. https://doi.org/10.1007/s10665-017-9937-3
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B, 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
- Mechab, I., El Meiche, N., and Bernard, F., (2016), "Free vibration analysis of higher-order shear elasticity nanocomposite beams with consideration of nonlocal elasticity and Poisson effect", J. Nanomech. Micromech., 6(3). https://doi.org/10.1061/(ASCE)NM.2153-5477.0000110
- Murmu, T. and Pradhan, S.C. (2008), "Buckling analysis of beam on winkler foundation by using MDQM and nonlocal theory", J. Aerosp. Sci. Technol., 60(3), 206-215.
- Nedri, K., El Meiche, N., and Tounsi, A. (2014), "Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory", J. Mech. Sci., 49(6), 629-640. https://doi.org/10.1007/s11029-013-9379-6
- Pradhan, S.C. and Murmu, T. (2009), "Differential quadrature method for vibration analysis of beam on Winkler foundation based on nonlocal elastic theory", J. Inst. Eng. (India) Metallurgy Mater. Eng. Div., 89, 3-12.
- Rajasekaran, S., Gimena, L., Gonzaga, P. and Gimena, F.N. (2009), "Solution method for the classical beam theory using differential quadrature", Struct. Eng. Mech., 33(6), 675-696. https://doi.org/10.12989/sem.2009.33.6.675.
- Rajasekaran, S., and Khaniki, H.B. (2018), "Bending, buckling and vibration analysis of functionally gradednon-uniform nanobeams via finite element method", J. Brazilian Soc. Mech. Sci. Eng., 40, 549. https://doi.org/10.1007/s40430-018-1460-6.
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
- Tahouneh, V. (2014), "Free vibration analysis of bidirectional functionally graded annular plates resting on elastic foundations using differential quadrature method", Struct. Eng. Mech., 52(4), 663-686. https://doi.org/10.12989/sem.2014.52.4.663.
- Tahouneh, V. (2018). "Vibrational analysis of sandwich sectorial plates with functionally graded sheets reinforced by aggregated carbon nanotube", J. Sandwich Struct. Mater., 22(5), 1-46. https://doi.org/10.1177/1099636218785972.
- Tahouneh, V. (2019), "Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory", Steel Compos. Struct., 33(5), 717-727. https://doi.org/10.12989/scs.2019.33.5.717.
- Tahouneh, V.(2020), "Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches", Steel Compos. Struct., 34(2), 261-277. https://doi.org/10.12989/scs.2020.34.2.261.
- Yang, J. and Chen, Y (2008),"Free vibration and buckling analyses of functionally graded beams with edge cracks", Compos. Struct., 83(1), 48-60. https://doi.org/10.1016/j.compstruct.2007.03.006.
- Yas, M.H., Sobhani Aragh, B. and Heshmati, M. (2011), "Three-dimensional free vibration analysis of functionally graded fiber reinforced cylindrical panels using differential quadrature method", Struct. Eng. Mech., 37(5), 529-542. https://doi.org/10.12989/sem.2011.37.5.529.