References
- Anitescu, C., Hossain, M.N., Rabczuk, T. (2018), "Recovery-based error estimation and adaptivity using high-order splines over hierarchical T-meshes", Comput. Methods. Appl. Mech. Eng., 328, 638-662. https://doi.org/10.1016/j.cma.2017.08.032.
- Beirao Da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A. (2013), "Basic principles of virtual element methods", Math. Models Methods Appl. Sci., 23, 199-214. https://doi.org/10.1142/S0218202512500492.
- Belytschko, T., Lu, Y.Y., Gu, L. (1995), "Crack propagation by element-free Galerkin methods", Eng. Fracture Mech., 51, 295-315. https://doi.org/ 10.1016/0013-7944(94)00153-9.
- Bittencourt, T.N., Wawrzynek, P.A., Ingraffea, A.R., Sousa, J.L. (1996), "Quasi-automatic simulation of crack propagation for 2D lefm problems", Eng. Fracture Mech., 55, 321-334. https://doi.org/ 10.1016/0013-7944(95)00247-2.
- Chen, J., Chen, Z. (2016), "Three-dimensional superconvergent gradient recovery on tetrahedral meshes", J. Numerical Methods Eng., 108, 819-838. https://doi.org/10.1002/nme.5229.
- Cho, J.R., (2019), "Near-tip grid refinement for the effective and reliable natural element crack analysis", Struct. Eng. Mech., 70(3), 279-287. https://doi.org/ 10.12989/sem.2019.70.3.279.
- Dasgupta, G. (2003), "Integration within polygonal finite elements", J. Aerosp. Eng., 16, 9-18. https://doi.org/10.1061/(ASCE)0893-1321(2003)16:1(9).
- Erdogan, F., Sih, G.C. (1963), "On the crack extension in plates under plane loading and transverse shear", J. Basic Eng., 4, 519-27. https://doi.org/ 10.1115/1.3656897.
- Floater, M.S. (2003), "Mean value coordinates", Comput. Aid. Geometric Design., 20, 19-27. https://doi.org/10.1016/S0167-8396(03)00002-5.
- Gibert, G., Prabel, B., Gravouil, A. and Jacquemoud, C. (2019), "A 3D automatic mesh refinement X-FEM approach for fatigue crack propagation", Finite Elements Anal Design., 157, 21-37. https://doi.org/10.1016/j.finel.2019.01.008.
- Gonzalez-Estrada, O.A., Rodenas, J.J., Bordas, S.P.A., Nadal, E., Kerfriden, P., Fuenmayor, F. (2015), "Locally equilibrated stress recovery for goal oriented error estimation in the extended finite element method", Comput. Struct., 152, 1-10. https://doi.org/10.1016/j.compstruc.2015.01.015.
- Griffith, A.A. (1921), "The phenomena of rupture and flow in solids", Philosophical Transactions of the Royal Society, 221, 163-198. https://doi.org/10.1098/rsta.1921.0006.
- Hoshina, T.Y.S., Menezes, I.F.M., Pereira, A. (2018), "A simple adaptive mesh refinement scheme for topology optimization using polygonal meshes", J. Brazilian Soc. Mech. Sci. Eng., 40, 1-17. https://doi.org/10.1007/s40430-018-1267-5.
- Hussein, A., Aldakheel, F., Hudobivnik, B., Wriggers, P., Guidault, P.-A., Allix, O. (2019), "A computational framework for brittle crack-propagation based on efficient virtual element method", Finite Elements Anal. Design, 159, 15-32. https://doi.org/10.1016/j.finel.2019.03.001.
- Huynh, H.D., Tran, P., Zhuang, X., Nguyen-Xuan, H. (2019), "An extended polygonal finite element method for large deformation fracture analysis", Eng. Fracture Mech., 209, 344-368. https://doi.org/10.1016/j.engfracmech.2019.01.024.
- Ingraffea, A.R. (2004), "Computational fracture mechanics", Encyclopedia of computational mechanics, vol 2. Wiley, New Jersey. https://doi.org/10.1002/0470091355.ecm032.
- Khoei, A.R., Azadi, H., Moslemi, H. (2008), "Modeling of crack propagation via an adaptive mesh refinement based on modified superconvergent patch recovery technique", Eng. Fracture Mech., 75, 2921-2945. https://doi.org/10.1016/j.engfracmech.2008.01.006.
- Khoei, A.R., Yasbolaghi, R., Biabanaki, S. (2015), "A polygonal finite element method for modeling crack propagation with minimum remeshing", Int. J. Fracture, 194, 123-48. https://doi.org/10.1007/s10704-015-0044-z.
- Leon, S.E., Spring, D.W., Paulino, G.H. (2014), "Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elements", J. Numerical Methods Eng.100, 555-576. https://doi.org/10.1002/nme.4744.
- Malsch, E.A., Lin, J.J., Dasgupta, G. (2005), "Smooth two dimensional interpolations: a recipe for all polygons", J. Graphics Tools, 10, 27-39. https://doi.org/10.1080/2151237X.2005.10129192.
- Meyer, M., Lee, H., Barr, A.H., Desbrun, M. (2002), "Generalized barycentric coordinates for irregular n-gons", J. Graphics Tools7, 13-22. https://doi.org/10.1080/10867651.2002.10487551.
- Moes, N., Dolbow, J., Belytschko, T. (1999), "A finite element method for crack growth without remeshing", J. Numerical Methods Eng.46, 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J.
- Moslemi, H., Khoei, A.R. (2009), "3D adaptive finite element modeling of non-planar curved crack growth using the weighted superconvergent patch recovery method", Eng. Fracture Mech., 76, 1703-1728. https://doi.org/10.1016/j.engfracmech.2009.03.013.
- Moslemi, H., Tavakkoli, A. (2018), "A statistical approach for error estimation in adaptive finite element method", J. Comput. Methods Eng. Sci. Mech., 19, 440-450. https://doi.org/10.1080/15502287.2018.1558424.
- Ooi, E.T., Shi, M., Song, C., Tin-Loi, F., Yang, Z. (2013), "Dynamic crack propagation simulation with scaled boundary polygon elements and automatic remeshing technique", Eng. Fracture Mech., 106,1-21. https://doi.org/10.1016/j.engfracmech.2013.02.002.
- Ozakca, M. (2003), "Comparison of error estimation methods and adaptivity for plane stress/strain problems", Struct. Eng. Mech., 15, 579-608. https://doi.org/10.12989/sem.2003.15.5.579.
- Rodenas, J.J., Gonzalez-Estrada, O.A., Chinesta, F., Fuenmayor, F.J. (2013), "Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM", Comput. Mech., 52, 321-344. https://doi.org/10.1007/s00466-012-0814-7.
- Sibson, R. (1980), "A vector identity for the Dirichlet tessellation", Mathematical Proceedings of the Cambridge Philosophical Society, 87, 151-155. https://doi.org/10.1017/S0305004100056589.
- Spring, D.W., Leon, S.E., Paulino, G.H. (2014), "Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture", Int. J. Fracture, 189, 33-57. https://doi.org/10.1007/s10704-014-9961-5.
- Sukumar, N. (2004), "Construction of polygonal interpolants: a maximum entropy approach", J. Numerical Methods Eng., 61, 2159-2181. https://doi.org/10.1002/nme.1193.
- Sukumar, N., Moes, N., Moran, B., Belytschko, T. (2000), "Extended finite element method for three-dimensional crack modelling", J. Numerical Methods Eng., 48, 1549-1570. https://doi.org/10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A.
- Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M. (2010), "Polygonal finite elements for topology optimization: a unifying paradigm", J. Numerical Methods Eng., 82, 671-698. https://doi.org/10.1002/nme.2763.
- Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M. (2012), "Polymesher: a general-purpose mesh generator for polygonal elements written in Matlab", Struct. Multidisciplinary Opt.,45, 309-328. https://doi.org/10.1007/s00158-011-0706-z.
- Ullah, Z., Augarde, C. (2013), "Finite deformation elasto-plastic modelling using an adaptive meshless method", Comput. Struct.,118, 39-52. https://doi.org/10.1016/j.compstruc.2012.04.001.
- Wachspress, E.L. (1975), A Rational Finite Element Basis, Academic Press, New York. https://doi.org/10.1115/1.3452953.
- Wang, H., Qin, Q.H. (2017), "Voronoi polygonal hybrid finite elements with boundary integrals for plane isotropic elastic problems", J. Appl. Mech., 9, 1750031. https://doi.org/10.1142/S1758825117500314.
- Warren, J. (1996), "Barycentric coordinates for convex polytopes", Adv. Comput. Math., 6, 97-108. https://doi.org/10.1007/BF02127699.
- Zi, G., Rabczuk, T., Wolfgang W. (2007), "Extended meshfree methods without branch enrichment for cohesive cracks", Comput. Mech., 40, 367-382. https://doi.org/10.1007/s00466-006-0115-0.
- Ziaei, H., Moslemi, H. (2020), "A new adaptive mesh refinement strategy based on a probabilistic error estimation", Struct. Eng. Mech., 74(4), 547-557. https://doi.org/10.12989/sem.2020.74.4.547.
- Zienkiewicz, O.C., Zhu, J.Z. (1987), "A simple error estimator and adaptive procedure for practical engineering analysis", J. Numerical Methods Eng., 24, 337-357. https://doi.org/10.1002/nme.1620240206.
- Zienkiewicz, O.C., Zhu, J.Z. (1992), "The superconvergent patch recovery (SPR) and adaptive finite element refinement", Comput. Methods. Appl. Mech. Eng., 101, 207-224. https://doi.org/10.1016/0045-7825(92)90023-D.