DOI QR코드

DOI QR Code

Polygonal finite element modeling of crack propagation via automatic adaptive mesh refinement

  • Shahrezaei, M. (Department of Civil Engineering, Shahed University) ;
  • Moslemi, H. (Department of Civil Engineering, Shahed University)
  • Received : 2020.03.19
  • Accepted : 2020.08.06
  • Published : 2020.09.25

Abstract

Polygonal finite element provides a great flexibility in mesh generation of crack propagation problems where the topology of the domain changes significantly. However, the control of the discretization error in such problems is a main concern. In this paper, a polygonal-FEM is presented in modeling of crack propagation problems via an automatic adaptive mesh refinement procedure. The adaptive mesh refinement is accomplished based on the Zienkiewicz-Zhu error estimator in conjunction with a weighted SPR technique. Adaptive mesh refinement is employed in some steps for reduction of the discretization error and not for tracking the crack. In the steps that no adaptive mesh refinement is required, local modifications are applied on the mesh to prevent poor polygonal element shapes. Finally, several numerical examples are analyzed to demonstrate the efficiency, accuracy and robustness of the proposed computational algorithm in crack propagation problems.

Keywords

References

  1. Anitescu, C., Hossain, M.N., Rabczuk, T. (2018), "Recovery-based error estimation and adaptivity using high-order splines over hierarchical T-meshes", Comput. Methods. Appl. Mech. Eng., 328, 638-662. https://doi.org/10.1016/j.cma.2017.08.032.
  2. Beirao Da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A. (2013), "Basic principles of virtual element methods", Math. Models Methods Appl. Sci., 23, 199-214. https://doi.org/10.1142/S0218202512500492.
  3. Belytschko, T., Lu, Y.Y., Gu, L. (1995), "Crack propagation by element-free Galerkin methods", Eng. Fracture Mech., 51, 295-315. https://doi.org/ 10.1016/0013-7944(94)00153-9.
  4. Bittencourt, T.N., Wawrzynek, P.A., Ingraffea, A.R., Sousa, J.L. (1996), "Quasi-automatic simulation of crack propagation for 2D lefm problems", Eng. Fracture Mech., 55, 321-334. https://doi.org/ 10.1016/0013-7944(95)00247-2.
  5. Chen, J., Chen, Z. (2016), "Three-dimensional superconvergent gradient recovery on tetrahedral meshes", J. Numerical Methods Eng., 108, 819-838. https://doi.org/10.1002/nme.5229.
  6. Cho, J.R., (2019), "Near-tip grid refinement for the effective and reliable natural element crack analysis", Struct. Eng. Mech., 70(3), 279-287. https://doi.org/ 10.12989/sem.2019.70.3.279.
  7. Dasgupta, G. (2003), "Integration within polygonal finite elements", J. Aerosp. Eng., 16, 9-18. https://doi.org/10.1061/(ASCE)0893-1321(2003)16:1(9).
  8. Erdogan, F., Sih, G.C. (1963), "On the crack extension in plates under plane loading and transverse shear", J. Basic Eng., 4, 519-27. https://doi.org/ 10.1115/1.3656897.
  9. Floater, M.S. (2003), "Mean value coordinates", Comput. Aid. Geometric Design., 20, 19-27. https://doi.org/10.1016/S0167-8396(03)00002-5.
  10. Gibert, G., Prabel, B., Gravouil, A. and Jacquemoud, C. (2019), "A 3D automatic mesh refinement X-FEM approach for fatigue crack propagation", Finite Elements Anal Design., 157, 21-37. https://doi.org/10.1016/j.finel.2019.01.008.
  11. Gonzalez-Estrada, O.A., Rodenas, J.J., Bordas, S.P.A., Nadal, E., Kerfriden, P., Fuenmayor, F. (2015), "Locally equilibrated stress recovery for goal oriented error estimation in the extended finite element method", Comput. Struct., 152, 1-10. https://doi.org/10.1016/j.compstruc.2015.01.015.
  12. Griffith, A.A. (1921), "The phenomena of rupture and flow in solids", Philosophical Transactions of the Royal Society, 221, 163-198. https://doi.org/10.1098/rsta.1921.0006.
  13. Hoshina, T.Y.S., Menezes, I.F.M., Pereira, A. (2018), "A simple adaptive mesh refinement scheme for topology optimization using polygonal meshes", J. Brazilian Soc. Mech. Sci. Eng., 40, 1-17. https://doi.org/10.1007/s40430-018-1267-5.
  14. Hussein, A., Aldakheel, F., Hudobivnik, B., Wriggers, P., Guidault, P.-A., Allix, O. (2019), "A computational framework for brittle crack-propagation based on efficient virtual element method", Finite Elements Anal. Design, 159, 15-32. https://doi.org/10.1016/j.finel.2019.03.001.
  15. Huynh, H.D., Tran, P., Zhuang, X., Nguyen-Xuan, H. (2019), "An extended polygonal finite element method for large deformation fracture analysis", Eng. Fracture Mech., 209, 344-368. https://doi.org/10.1016/j.engfracmech.2019.01.024.
  16. Ingraffea, A.R. (2004), "Computational fracture mechanics", Encyclopedia of computational mechanics, vol 2. Wiley, New Jersey. https://doi.org/10.1002/0470091355.ecm032.
  17. Khoei, A.R., Azadi, H., Moslemi, H. (2008), "Modeling of crack propagation via an adaptive mesh refinement based on modified superconvergent patch recovery technique", Eng. Fracture Mech., 75, 2921-2945. https://doi.org/10.1016/j.engfracmech.2008.01.006.
  18. Khoei, A.R., Yasbolaghi, R., Biabanaki, S. (2015), "A polygonal finite element method for modeling crack propagation with minimum remeshing", Int. J. Fracture, 194, 123-48. https://doi.org/10.1007/s10704-015-0044-z.
  19. Leon, S.E., Spring, D.W., Paulino, G.H. (2014), "Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elements", J. Numerical Methods Eng.100, 555-576. https://doi.org/10.1002/nme.4744.
  20. Malsch, E.A., Lin, J.J., Dasgupta, G. (2005), "Smooth two dimensional interpolations: a recipe for all polygons", J. Graphics Tools, 10, 27-39. https://doi.org/10.1080/2151237X.2005.10129192.
  21. Meyer, M., Lee, H., Barr, A.H., Desbrun, M. (2002), "Generalized barycentric coordinates for irregular n-gons", J. Graphics Tools7, 13-22. https://doi.org/10.1080/10867651.2002.10487551.
  22. Moes, N., Dolbow, J., Belytschko, T. (1999), "A finite element method for crack growth without remeshing", J. Numerical Methods Eng.46, 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J.
  23. Moslemi, H., Khoei, A.R. (2009), "3D adaptive finite element modeling of non-planar curved crack growth using the weighted superconvergent patch recovery method", Eng. Fracture Mech., 76, 1703-1728. https://doi.org/10.1016/j.engfracmech.2009.03.013.
  24. Moslemi, H., Tavakkoli, A. (2018), "A statistical approach for error estimation in adaptive finite element method", J. Comput. Methods Eng. Sci. Mech., 19, 440-450. https://doi.org/10.1080/15502287.2018.1558424.
  25. Ooi, E.T., Shi, M., Song, C., Tin-Loi, F., Yang, Z. (2013), "Dynamic crack propagation simulation with scaled boundary polygon elements and automatic remeshing technique", Eng. Fracture Mech., 106,1-21. https://doi.org/10.1016/j.engfracmech.2013.02.002.
  26. Ozakca, M. (2003), "Comparison of error estimation methods and adaptivity for plane stress/strain problems", Struct. Eng. Mech., 15, 579-608. https://doi.org/10.12989/sem.2003.15.5.579.
  27. Rodenas, J.J., Gonzalez-Estrada, O.A., Chinesta, F., Fuenmayor, F.J. (2013), "Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM", Comput. Mech., 52, 321-344. https://doi.org/10.1007/s00466-012-0814-7.
  28. Sibson, R. (1980), "A vector identity for the Dirichlet tessellation", Mathematical Proceedings of the Cambridge Philosophical Society, 87, 151-155. https://doi.org/10.1017/S0305004100056589.
  29. Spring, D.W., Leon, S.E., Paulino, G.H. (2014), "Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture", Int. J. Fracture, 189, 33-57. https://doi.org/10.1007/s10704-014-9961-5.
  30. Sukumar, N. (2004), "Construction of polygonal interpolants: a maximum entropy approach", J. Numerical Methods Eng., 61, 2159-2181. https://doi.org/10.1002/nme.1193.
  31. Sukumar, N., Moes, N., Moran, B., Belytschko, T. (2000), "Extended finite element method for three-dimensional crack modelling", J. Numerical Methods Eng., 48, 1549-1570. https://doi.org/10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A.
  32. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M. (2010), "Polygonal finite elements for topology optimization: a unifying paradigm", J. Numerical Methods Eng., 82, 671-698. https://doi.org/10.1002/nme.2763.
  33. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M. (2012), "Polymesher: a general-purpose mesh generator for polygonal elements written in Matlab", Struct. Multidisciplinary Opt.,45, 309-328. https://doi.org/10.1007/s00158-011-0706-z.
  34. Ullah, Z., Augarde, C. (2013), "Finite deformation elasto-plastic modelling using an adaptive meshless method", Comput. Struct.,118, 39-52. https://doi.org/10.1016/j.compstruc.2012.04.001.
  35. Wachspress, E.L. (1975), A Rational Finite Element Basis, Academic Press, New York. https://doi.org/10.1115/1.3452953.
  36. Wang, H., Qin, Q.H. (2017), "Voronoi polygonal hybrid finite elements with boundary integrals for plane isotropic elastic problems", J. Appl. Mech., 9, 1750031. https://doi.org/10.1142/S1758825117500314.
  37. Warren, J. (1996), "Barycentric coordinates for convex polytopes", Adv. Comput. Math., 6, 97-108. https://doi.org/10.1007/BF02127699.
  38. Zi, G., Rabczuk, T., Wolfgang W. (2007), "Extended meshfree methods without branch enrichment for cohesive cracks", Comput. Mech., 40, 367-382. https://doi.org/10.1007/s00466-006-0115-0.
  39. Ziaei, H., Moslemi, H. (2020), "A new adaptive mesh refinement strategy based on a probabilistic error estimation", Struct. Eng. Mech., 74(4), 547-557. https://doi.org/10.12989/sem.2020.74.4.547.
  40. Zienkiewicz, O.C., Zhu, J.Z. (1987), "A simple error estimator and adaptive procedure for practical engineering analysis", J. Numerical Methods Eng., 24, 337-357. https://doi.org/10.1002/nme.1620240206.
  41. Zienkiewicz, O.C., Zhu, J.Z. (1992), "The superconvergent patch recovery (SPR) and adaptive finite element refinement", Comput. Methods. Appl. Mech. Eng., 101, 207-224. https://doi.org/10.1016/0045-7825(92)90023-D.