DOI QR코드

DOI QR Code

On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells

  • Asrari, Reza (Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University) ;
  • Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Kheirikhah, Mohammad Mahdi (Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University)
  • 투고 : 2019.10.31
  • 심사 : 2020.04.03
  • 발행 : 2020.09.25

초록

The present paper employs nonlocal strain gradient theory (NSGT) to study buckling behavior of functionally graded magneto-electro-thermo-elastic (FG-METE) nanoshells under various physical fields. NSGT modeling of the nanoshell contains two size parameters, one related to nonlocal stress field and another related to strain gradients. It is considered that mechanical, thermal, electrical and magnetic loads are exerted to the nanoshell. Temperature field has uniform and linear variation in nanoshell thickness. According to a power-law function, piezo-magnetic, thermal and mechanical properties of the nanoshell are considered to be graded in thickness direction. Five coupled governing equations have been obtained by using Hamilton's principle and then solved implementing Galerkin's method. Influences of temperature field, electric voltage, magnetic potential, nonlocality, strain gradient parameter and FG material exponent on buckling loads of the FG-METE nanoshell have been studied in detail.

키워드

참고문헌

  1. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A. A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
  2. Bedia, W. A., Houari, M. S. A., Bessaim, A., Bousahla, A. A., Tounsi, A., Saeed, T. and Alhodaly, M. S. (2019), "A New Hyperbolic Two-Unknown Beam Model for Bending and Buckling Analysis of a Nonlocal Strain Gradient Nanobeams", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/JNanoR.57.175.
  3. Addou, F. Y., Meradjah, M., Bousahla, A. A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S. R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
  4. Ahmed, R.A., Fenjan, R.M., Luay Badr Hamad and Faleh, N. M. (2020), "A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams", Adv. Mater. Res., 9(1), 33-48. https://doi.org/10.12989/amr.2020.9.1.033
  5. Alasadi, A. A., Ahmed, R. A. and Faleh, N. M. (2019), "Analyzing nonlinear vibrations of metal foam nanobeams with symmetric and non-symmetric porosities", Adv. Aircraft Spacecraft Sci., 6(4), 273-282. https://doi.org/10.12989/aas.2019.6.4.273.
  6. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  7. Al-Maliki, A. F., Faleh, N. M. and Alasadi, A. A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monitor. Maintenance, 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147.
  8. Arefi, M., Kiani, M. and Rabczuk, T. (2019), "Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets", Compos. Part B. Eng., 168, 320-333. https://doi.org/10.1016/j.compositesb.2019.02.057.
  9. Attia, M. A. and Mahmoud, F. F. (2016), "Modeling and analysis of nanobeams based on nonlocal-couple stress elasticity and surface energy theories", J. Mech. Sci., 105, 126-134. https://doi.org/10.1016/j.ijmecsci.2015.11.002.
  10. AitYahia (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143 - 1165. doi.org/10.12989/sem.2015.53.6.1143.
  11. Aissani, K., Bouiadjra, M. B., Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., 55(4), 743-763. https://doi.10.12989/sem.2015.55.4.743 .
  12. Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity", Struct. Eng. Mech., 48(2), 195-205. doi.10.12989/sem.2013.48.2.195.
  13. Barati, M. R. and Zenkour, A. M. (2018), "Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions", J. Vib. Control, 24(10), 1910-1926. https://doi.org/10.1177%2F1077546316672788. https://doi.org/10.1177/1077546316672788
  14. Barretta, R., Feo, L., Luciano, R., de Sciarra, F. M. and Penna, R. (2016), "Functionally graded Timoshenko nanobeams: a novel nonlocal gradient formulation", Compos. Part B. Eng., 100, 208-219. https://doi.org/10.1016/j.compositesb.2016.05.052.
  15. Batou, B., Nebab, M., Bennai, R., Atmane, H. A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699. https://doi.org/10.12989/scs.2019.33.5.699.
  16. Belbachir, N., Draich, K., Bousahla, A. A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 913-924. https://doi.org/10.12989/scs.2019.33.1.081.
  17. Berghouti, H., Adda Bedia, E. A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  18. Berrabah, H. M., Tounsi, A., Semmah, A. and Adda, B. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351.
  19. Bich, D. H., Nguyen, N. X. and Van Tung, H. (2013), "Postbuckling of functionally graded cylindrical shells based on improved Donnell equations", Vietnam J. Mech., 35(1), 1-15. https://doi.org/10.15625/0866-7136/35/1/2894.
  20. Bousahla, A. A., Benyoucef, S., Tounsi, A. and Mahmoud, S. R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313.
  21. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A. A., Bourada, M., Tounsi, A. and Al-Osta, M. A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
  22. Bourada, F., Bousahla, A. A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
  23. Boutaleb, S., Benrahou, K. H., Bakora, A., Algarni, A., Bousahla, A. A., Tounsi, A., Tounsi, A. and Mahmoud, S. R. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 189-206. http://dx.doi.org/10.12989/anr.2019.7.3.191.
  24. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A. A., Tounsi, A. and Mahmoud, S. R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  25. Chaabane, L. A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F. Z., Tounsi, A., Derras, A., Bousahla, A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  26. Chikh, A., Bakora, A., Heireche, H., Houari, M.S.A., Tounsi, A. and Bedia, E.A. (2016), "Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory", Struct. Eng. Mech., 57(4), 617-639. https://doi.org/10.12989/sem.2016.57.4.617.
  27. Draiche, K., Bousahla, A. A., Tounsi, A., Alwabli, A. S., Tounsi, A. and Mahmoud, S. R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory. Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  28. Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
  29. Ebrahimi, F. and Barati, M. R. (2016), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), 105014. https://doi.org/10.1088/0964-1726/25/10/105014.
  30. Ebrahimi, F. and Barati, M. R. (2018), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control., 24(3), 549-564. https://doi.org/10.1177/1077546316646239.
  31. Ebrahimi, F., Barati, M. R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008.
  32. Ebrahimi, F. and Dabbagh, A. (2017), "On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory", Compos. Struct., 162, 281-293. https://doi.org/10.1016/j.compstruct.2016.11.058.
  33. Eltaher, M. A., Khater, M. E. and Emam, S. A. (2016), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Modell., 40(5-6), 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026.
  34. Eringen, A. C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Physics, 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  35. Ebrahimi, F. and Barati, M.R. (2018), "Wave propagation analysis of smart strain gradient piezo-magneto-elastic nonlocal beams", Struct. Eng. Mech., 66(2), 237-248.https://doi.org/org/10.12989/sem.2018.66.2.237.
  36. Ebrahimi, F., Shaghaghi, G. R. and Boreiry, M. (2016), "An investigation into the influence of thermal loading and surface effects on mechanical characteristics of nanotubes", Struct. Eng. Mech., 57(1), 179-200. https://doi.org/10.12989/sem.2016.57.1.179
  37. Faleh, N. M., Fenjan, R. M. and Ahmed, R. A. (2020), "Forced vibrations of multi-phase crystalline porous shells based on strain gradient elasticity and pulse load effects", J. Vib. Eng. Technol., 1-9. https://doi.org/10.1007/s42417-020-00203-8.
  38. Farajpour, A., Yazdi, M. H., Rastgoo, A., Loghmani, M. and Mohammadi, M. (2016), "Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates", Compos. Struct., 140, 323-336. https://doi.org/10.1016/j.compstruct.2015.12.039.
  39. Fenjan, R. M., Ahmed, R. A., Alasadi, A. A. and Faleh, N. M. (2019a), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coupled Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.
  40. Fenjan, R. M., Ahmed, R. A. and Faleh, N. M. (2019b), "Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory", Adv. Aircraft Spacecraft Sci., 6(4), 297-314. https://doi.org/10.12989/aas.2019.6.4.297.
  41. Fenjan, R. M., Hamad, L. B. and Faleh, N. M. (2020), "Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects", Adv. Aircraft Spacecraft Sci., 7(2), 169-186. https://doi.org/10.12989/aas.2020.7.2.169.
  42. Heydarpour, Y. and Malekzadeh, P. (2019), "Dynamic stability of cylindrical nanoshells under combined static and periodic axial loads", J. Brazilian Soc. Mech. Sci. Eng., 41(4), 184. https://doi.org/10.1007/s40430-019-1675-1.
  43. Hanifi Hachemi Amar, L., Kaci, A. and Tounsi, A. (2017), "On the size-dependent behavior of functionally graded micro-beams with porosities", Struct. Eng. Mech., 64(5), 527-541. https://doi.org/10.12989/sem.2017.64.5.527 .
  44. Hadji, L., HassaineDaouadji, T., Ait Amar Meziane, M. and Tlidji, Y., (2016), "Analysis of functionally graded beam using a new first-order shear deformation theory", Struct. Eng. Mech., 57(2), 315-325. https://doi.org/10.12989/sem.2016.57.2.315 .
  45. Hamad, L. B., Khalaf, B. S. and Faleh, N. M. (2019), "Analysis of static and dynamic characteristics of strain gradient shell structures made of porous nano-crystalline materials", Adv. Mater. Res., 8(3), 179. https://doi.org/10.12989/amr.2019.8.3.179.
  46. Hellal, H., Bourada, M., Hebali, H., Bourada, F., Tounsi, A., Bousahla, A. A. and Mahmoud, S. R. (2019), "Dynamic and stability analysis of functionally graded material sandwich plates in hygro-thermal environment using a simple higher shear deformation theory", J. Sandwich Struct. Mater., (Accepted), https://doi.org/10.1177/1099636219845841.
  47. Hussain, M., Naeem, M. N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  48. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 7(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
  49. Karami, B., Janghorban, M. and Tounsi, A. (2019b), "On exact wave propagation analysis of triclinic material using three dimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487.
  50. Karami, B., Janghorban, M. and Tounsi, A. (2019c), "On pre stressed functionally graded anisotropic nanoshell in magnetic field", J. Brazilian Soc. Mech. Sci. Eng., 41, 495. https://doi.org/10.1007/s40430-019-1996-0.
  51. Karami, B., Janghorban, M. and Tounsi, A. (2020), "Novel study on functionally graded anisotropic doubly curved nanoshells", Eur. Phys. J. Plus 135, 103. https://doi.org/10.1140/epjp/s13360-019-00079-y.
  52. Kaddari, M., Kaci, A., Bousahla, A. A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E.A. and Al-Osta, M. A. (2020), "A study on the structural behavior of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and Free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  53. Khiloun, M., Bousahla, A. A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S. R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng. Comput., https://doi.org/10.1007/s00366-019-00732-1.
  54. Kocaturk, T. and Akbas, S. D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417.
  55. Ke, L. L. and Wang, Y. S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory", Physica E Low-dimensional Syst. Nanostruct., 63, 52-61. https://doi.org/10.1016/j.physe.2014.05.002.
  56. Ke, L. L., Wang, Y. S., Yang, J. and Kitipornchai, S. (2014), "The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells", Smart Mater. Struct., 23(12), 125036. https://doi.org/10.1088/0964-1726/23/12/125036.
  57. Khalaf, B. S., Fenjan, R. M. and Faleh, N. M. (2019), "Analyzing nonlinear mechanical-thermal buckling of imperfect micro-scale beam made of graded graphene reinforced composites", Adv. Mater. Res., 8(3), 219. https://doi.org/10.12989/amr.2019.8.3.219.
  58. Kunbar, L. A. H., Alkadhimi, B. M., Radhi, H. S. and Faleh, N. M. (2020), "Flexoelectric effects on dynamic response characteristics of nonlocal piezoelectric material beam", Adv. Mater. Res., 8(4), 259. https://doi.org/10.12989/amr.2019.8.4.259.
  59. Li, L. and Hu, Y. (2015), "Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory", J. Eng. Sci., 97, 84-94. https://doi.org/10.1016/j.ijengsci.2015.08.013.
  60. Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011.
  61. Lu, L., Guo, X. and Zhao, J. (2017), "Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory", J. Eng. Sci., 116, 12-24. https://doi.org/10.1016/j.ijengsci.2017.03.006.
  62. Ma, L. H., Ke, L. L., Reddy, J. N., Yang, J., Kitipornchai, S. and Wang, Y. S. (2018), "Wave propagation characteristics in magneto-electro-elastic nanoshells using nonlocal strain gradient theory", Compos. Struct., 199, 10-23. https://doi.org/10.1016/j.compstruct.2018.05.061.
  63. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Adda Bedia, E. A. and Mahmoud, S. R. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandwich Struct. Mater., 21(6), 1906-1926. https://doi.org/10.1177%2F1099636217727577. https://doi.org/10.1177/1099636217727577
  64. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A. A. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  65. Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E. A. and Mahmoud, S. R. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. https://doi.org/10.1177/1099636217698443.
  66. Mehralian, F., Beni, Y. T. and Zeverdejani, M. K. (2017a), "Calibration of nonlocal strain gradient shell model for buckling analysis of nanotubes using molecular dynamics simulations", Physica B Condensed Matter, 521, 102-111. https://doi.org/10.1016/j.physb.2017.06.058.
  67. Mehralian, F., Beni, Y. T. and Zeverdejani, M. K. (2017b), "Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes", Physica B Condensed Matter, 514, 61-69. https://doi.org/10.1016/j.physb.2017.03.030.
  68. Pan, E. (2001), "Exact solution for simply supported and multilayered magneto-electro-elastic plates", J. Appl. Mech., 68(4), 608-618. https://doi.org/10.1115/1.1380385.
  69. Park, W. T., Han, S. C., Jung, W. Y and Lee, W. H. (2016), "Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239.
  70. Pour, H. R., Vossough, H., Heydari, M. M., Beygipoor, G. and Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method", Struct. Eng. Mech., 54(6), 1061-1073. https://doi.org/10.12989/sem.2015.54.6.1061.
  71. Ramirez, F., Heyliger, P. R. and Pan, E. (2006), "Free vibration response of two-dimensional magneto-electro-elastic laminated plates", J. Sound Vib., 292(3-5), 626-644. https://doi.org/10.1016/j.jsv.2005.08.004.
  72. Sayyad, A. S. and Ghugal, Y. M. (2018), "An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation", Adv. Aircraft Spacecraft Sci., 5(6), 671-689. https://doi.org/10.12989/aas.2018.5.6.671.
  73. Sahla, M., Saidi, H., Draiche, K., Bousahla, A. A., Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663.
  74. Semmah, A., Heireche, H., Bousahla, A.A., Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by nonlocal FSDT", Adv. Nano Res., 7(2), 89-98. http://dx.doi.org/10.12989/anr.2019.7.2.089.
  75. She, G. L., Yuan, F. G., Ren, Y. R., Liu, H. B. and Xiao, W. S. (2018), "Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory", Compos. Struct., 203, 614-623. https://doi.org/10.1016/j.compstruct.2018.07.063.
  76. Simsek, M. (2019), "Some closed-form solutions for static, buckling, free and forced vibration of functionally graded (FG) nanobeams using nonlocal strain gradient theory", Compos. Struct., 224, 111041. https://doi.org/10.1016/j.compstruct.2019.111041.
  77. Taghizadeh, M., Ovesy, H. R. and Ghannadpour, S. A. M. (2015), "Nonlocal integral elasticity analysis of beam bending by using finite element method", Struct. Eng. Mech., 54(4), 755-769. https://doi.org/10.12989/sem.2015.54.4.755 .
  78. Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A. and Mahmoud, S. R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637.
  79. Tounsi, A., Houari, M. S. A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., 60(4), 547-565. https://doi.org/10.12989/sem.2016.60.4.547 .
  80. Waksmanski, N. and Pan, E. (2017), "An analytical three-dimensional solution for free vibration of a magneto-electro-elastic plate considering the nonlocal effect", J. Intelligent Mater. Syst. Struct., 28(11), 1501-1513. https://doi.org/10.1177/1045389X16672734.
  81. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M. S. A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21(1), 15-25. https://doi.org/10.12989/sem.2018.68.6.661.
  82. Zarga, D., Tounsi, A., Bousahla, A. A., Bourada, F. and Mahmoud, S. R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
  83. Zaoui, F. Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B, 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.
  84. Zemri, A., Houari, M. S. A., Bousahla, A. A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  85. Zeighampour, H., Beni, Y. T. and Dehkordi, M. B. (2018), "Wave propagation in viscoelastic thin cylindrical nanoshell resting on a visco-Pasternak foundation based on nonlocal strain gradient theory", Thin-Walled Struct., 122, 378-386. https://doi.org/10.1016/j.tws.2017.10.037.