DOI QR코드

DOI QR Code

Lateral earth pressure and bending moment on sheet pile walls due to uniform surcharge

  • Received : 2020.01.15
  • Accepted : 2020.09.10
  • Published : 2020.10.10

Abstract

Cantilever sheet pile walls are subjected to surcharge loading located on the backfill soil and at different distances from the top of the wall. The response of cantilever sheet pile walls to surcharge loadings at varying distances under seismic conditions is scarce in literature. In the present study, the influence of uniform surcharge load on cantilever sheet pile wall at varying distances from the top of the wall under seismic conditions are analyzed using finite difference based computer program. The results of the numerical analysis are presented in non-dimensional form like variation of bending moment and horizontal earth pressure along the depth of the sheet pile walls. The numerical analysis has been conducted at different magnitudes of horizontal seismic acceleration coefficient and vertical seismic acceleration coefficients by varying the magnitude and position of uniform surcharge from the top of the wall for different embedded depths and types of soil. The parametric study is conducted with different embedded depth of sheet pile walls, magnitude of surcharge on the top of the wall and at a distance from the top of the wall for different angles of internal friction. It is observed that the maximum bending moment increases and more mobilization of earth pressure takes place with increase in horizontal seismic acceleration coefficients, magnitude of uniform surcharge, embedded depth and decrease in the distance of surcharge from the top of the wall in loose sand.

Keywords

References

  1. Bahrami, M., Khodakarami, M.I. and Haddad, A. (2018), "3D numerical investigation of the effect of wall penetration depth on excavations behavior in sand", Comput. Geotech., 98, 82-92. https://doi.org/10.1016/j.compgeo.2018.02.009.
  2. Bowles, J.E. (2012), Foundation Analysis and Design, 5th Edition, McGraw Hill, New York.
  3. Callisto, L. (2014), "Capacity design of embedded retaining structures", Geotechnique, 64(3), 204-214. https://doi.org/10.1680/geot.13.P.091.
  4. Callisto, L. and Soccodato, F.M. (2010), "Seismic design of flexible cantilevered retaining walls", J. Geotech. Geoenviron. Eng., 136(2), 344-354. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000216.
  5. Caltabiano, S., Cascone, E. and Maugeri, M. (2012), "Static and seismic limit equilibrium analysis of sliding retaining walls under different surcharge conditions", Soil Dyn. Earthq. Eng., 37, 38-55. https://doi.org/10.1016/j.soildyn.2012.01.015.
  6. Chatterjee, K., Choudhury, D. and Poulos, H.G. (2015), "Seismic analysis of laterally loaded pile under influence of vertical loading using finite element method", Comput. Geotech., 67, 172-186. https://doi.org/10.1016/j.compgeo.2015.03.004.
  7. Chen, Z., Yang, P., Liu, H., Zhang, W. and Wu, C. (2019), "Characteristics analysis of granular landslide using shaking table model test", Soil Dyn. Earthq. Eng., 126, 105761. https://doi.org/10.1016/j.soildyn.2019.105761.
  8. Chowdhury, S.S., Deb, K. and Sengupta, A. (2016), "Effect of fines on behavior of braced excavation in sand: Experimental and numerical study", Int. J. Geomech., 16(1), 04015018. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000487.
  9. Chowdhury, S.S., Deb, K. and Sengupta, A. (2013), "Estimation of design parameters for braced excavation: A numerical study", Int. J. Geomech., 13(3), 234-247. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000207.
  10. Conte, E., Troncone, A. and Vena, M. (2017), "A method for the design of embedded cantilever retaining walls under static and seismic loading", Geotechnique, 67(12), 1081-1089. https://doi.org/10.1680/jgeot.16.P.201.
  11. Conti, R., Viggiani, G.M.B. and Buralid'Arezzo, F. (2014), "Some remarks on the seismic behaviour of embedded cantilevered retaining walls", Geotechnique, 64(1), 40-50. https://doi.org/10.1680/geot.13.P.031.
  12. Conti, R., De Sanctis, L. and Viggiani, G.M.B. (2012), "Numerical modelling of installation effects for diaphragm walls in sand", Acta Geotechnica, 7(3), 219-237. https://doi.org/10.1007/s11440-011-0157-0.
  13. Conti. R. and Viggiani. G.M.B. (2013), "A new limit equilibrium method for the pseudostatic design of embedded cantilevered retaining walls", Soil Dyn. Earthq. Eng., 50, 143-150. https://doi.org/10.1016/j.soildyn.2013.03.008.
  14. Georgiadis, M. and Anagnostopoulos, C. (1998), "Lateral pressure on sheet pile walls due to strip load", J. Geotech. Geoenviron. Eng., 124(1), 95-98. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:1(95).
  15. Goh, A.T.C., Zhang, F., Zhang, W. and Chew, O.Y.S. (2017a), "Assessment of strut forces for braced excavation in clays from numerical analysis and field measurements", Comput. Geotech., 86, 141-149. https://doi.org/10.1016/j.compgeo.2017.01.012.
  16. Goh, A.T.C., Zhang, F., Zhang, W., Zhang, Y. and Liu, H. (2017b), "A simple estimation model for 3D braced excavation wall deflection", Comput. Geotech., 83, 106-113. https://doi.org/10.1016/j.compgeo.2016.10.022.
  17. Goh, A.T.C., Zhang, W.G. and Wong, K.S. (2019), "Deterministic and reliability analysis of basal heave stability for excavation in spatial variable soils", Comput. Geotech., 108, 152-160. https://doi.org/10.1016/j.compgeo.2018.12.015.
  18. Itasca (2016), User's Guide for FLAC2D, Version 8.0, Itasca Consulting Group, Minneapolis, Minnesota, U.S.A.
  19. Jiang, S., Du, C. and Sun, L. (2018), "Numerical analysis of sheet pile wall structure considering soil-structure interaction", Geomech. Eng., 16(3), 309-320. https://doi.org/10.12989/gae.2018.16.3.309.
  20. King, G.J.W. (1995), "Analysis of cantilever sheet-pile walls in cohesionless soil", J. Geotech. Eng., 121(9), 629-635. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:9(629).
  21. Lancellotta, R. (2012), Geotecnica, 4th Edition, Zanichelli, Bologna, Italy.
  22. Lee, C.I., Kim, E.K., Park, J.S. and Lee, Y.J. (2018), "Preliminary numerical analysis of controllable prestressed wale system for deep excavation", Geomech. Eng., 15(5), 1061-1070. https://doi.org/10.12989/gae.2018.15.5.1061.
  23. Madabhushi, S.P.G. and Chandrasekaran, V.S. (2005), "Rotation of cantilever sheet pile walls", J. Geotech. Geoenviron. Eng., 131(2), 202-212. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(202).
  24. Madabhushi, S.P.G. and Zeng, X. (1998), "Seismic response of gravity quay walls. II: numerical modelling", J. Geotech. Geoenviron. Eng., 124(5), 418-427. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:5(418).
  25. Madabhushi, S.P.G. and Zeng, X. (2006), "Seismic response of flexible cantilever retaining walls with dry backfill", Geomech. Geoeng., 1(4), 275--289. https://doi.org/10.1080/17486020601039170.
  26. Motta, E. (1994) "Generalized Coulomb active-earth pressure for distanced surcharge", J. Geotech. Eng., 120(6), 1072-1079. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:6(1072).
  27. Nucor Skyline (2017), Technical Product Manual, New Jersey, USA. https://www.nucorskyline.com.
  28. Qu, H., Li, R., Hu, H., Jia, H. and Zhang, J. (2016), "An approach of seismic design for sheet pile retaining wall based on capacity spectrum method", Geomech. Eng., 11(2), 309-323. https://doi.org/10.12989/gae.2016.11.2.309.
  29. Singh, A.P. and Chatterjee, K. (2020a), "A simplified method for seismic design of cantilever sheet pile walls under infinite uniform surcharge load", Int. J. Geomech., 20(9), 04020139-1_04020139-11. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001764.
  30. Singh, A.P. and Chatterjee, K. (2020b), "Effect of soil-wall friction angle on behaviour of sheet pile wall under surcharge loading", Proc. Nat. Acad. Sci. India Section A Phys. Sci. https://doi.org/10.1007/s40010-020-00657-1.
  31. Singh, A.P. and Chatterjee, K. (2020c), "Ground settlement and deflection response of cantilever sheet pile wall subjected to surcharge", Indian Geotech. J., 50(4), 540-549. https://doi.org/10.1007/s40098-019-00387-1.
  32. Singh, A.P. and Chatterjee, K. (2020d), "Influence of soil type on static response of cantilever sheet pile walls under surcharge loading: A numerical study", Arab. J. Geosci., 13(3), 138. https://doi.org/10.1007/s12517-020-5170-x.
  33. Steenfelt, J.S. and Hansen, B. (1984), "Sheet pile design earth pressure for strip load", J. Geotech. Eng., 110(7), 976-986. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:7(976).
  34. Zhang, R., Zhang, W., Goh, A.T.C., Hou, Z. and Wang, W. (2018), "A simple model for ground surface settlement induced by braced excavation subjected to a significant groundwater drawdown", Geomech. Eng., 16(6), 635-642. https://doi.org/10.12989/gae.2018.16.6.635.
  35. Zhang, W.G., Goh, A.T.C., Goh, K.H., Chew, O.Y.S., Zhou, D. and Zhang, R. (2018a), "Performance of braced excavation in residual soil with groundwater drawdown", Undergr. Sp., 3(2), 150-165. https://doi.org/10.1016/j.undsp.2018.03.002.
  36. Zhang, W., Wang, W., Zhou, D., Zhang, R., Goh, A.T.C. and Hou, Z. (2018b), "Influence of groundwater drawdown on excavation responses-A case history in Bukit Timah granitic residual soils", J. Rock Mech. Geotech. Eng., 10(5), 856-864. https://doi.org/10.1016/j.jrmge.2018.04.006.
  37. Zhang, W., Goh, A.T.C. and Xuan, F. (2015), "A simple prediction model for wall deflection caused by braced excavation in clays", Comput. Geotech., 63, 67-72. https://doi.org/10.1016/j.compgeo.2014.09.001.
  38. Zhang, W., Han, L., Feng, L., Ding, X., Wang, L., Chen, Z., Liu, H., Aljarmouzi, A. and Sun, W. (2020), "Study on seismic behaviors of a double box utility tunnel with joint connections using shaking table model tests", Soil Dyn. Earthq. Eng., 136, 106118. https://doi.org/10.1016/j.soildyn.2020.106118.
  39. Zhang, W., Hou, Z., Goh, A.T.C. and Zhang, R. (2019), "Estimation of strut forces for braced excavation in granular soils from numerical analysis and case histories", Comput. Geotech., 106, 286-295. https://doi.org/10.1016/j.compgeo.2018.11.006.
  40. Zhang, W., Zhang, Y. and Goh, A.T.C. (2017), "Multivariate adaptive regression splines for inverse analysis of soil and wall properties in braced excavation", Tunn. Undergr. Sp. Tech., 64, 24-33. https://doi.org/10.1016/j.tust.2017.01.009.

Cited by

  1. The Stress Calculation Methods of Antislide Structures with Continuous Ladders vol.2020, 2020, https://doi.org/10.1155/2020/8829205