Acknowledgement
The financial support of the Suleyman Demirel University Scientific Research Projects Unit (SDU-BAP) with Grand No. 4857-YL1-17 is gratefully acknowledged. The authors would like to thank institution.
References
- Akgoz, B. and Civalek, O. (2017), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. B Eng., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024.
- Al Rjoub, Y.S. and Hamad, A.G. (2017), "Free vibration of functionally Euler-Bernoulli and Timoshenko graded porous beams using the transfer matrix method", KSCE J. Civil Eng., 21, 792-806. https://doi.org/10.1007/s12205-016-0149-6.
- Alsaid-Alwan, H.H.S. (2017), "Free vibration analysis of functionally graded beam with different engineering theories", Master of Science Thesis, Suleyman Demirel University, Graduate School of Natural and Applied Sciences, Department of Civil Engineering, Isparta.
- Anil, K.L., Panda, S.K., Sharma, N., Hirwani, C.K. and Topal, U. (2020), "Optimal fiber volume fraction prediction of layered composite using frequency constraints-A hybrid FEM approach", Comput. Concrete, 25(4), 303-310. https://doi.org/10.12989/cac.2020.25.4.303.
- Avcar M. (2015), "Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam", Struct. Eng. Mech., 55, 871-884. https://doi.org/10.12989/sem.2015.55.4.871.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
- Avcar, M. and Alsaid-Alwan, H. (2017a), "Free vibration of functionally graded Rayleigh beam", Int. J. Eng. Appl. Sci., 9, 127-137. http://dx.doi.org/10.24107/ijeas.322884.
- Avcar, M. and Alsaid-Alwan, H. (2017b), "Free vibration analysis of functionally graded beams using different engineering theories", 4th International Conference on Computational and Experimental Science and Engineering (ICCESEN 2017), Antalya, Turkey.
- Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2.
- Ayache, B., Bennai, R., Fahsi, B., Fourn, H., Atmane, H.A. and Tounsi, A. (2018), "Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory", Earthq. Struct., 15(4), 369-382. https://doi.org/10.12989/eas.2018.15.4.369.
- Aydogdu, M., Arda, M. and Filiz, S. (2018), "Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter", Adv. Nano Res., Int. J., 6(3), 257-278. http://dx.doi.org/10.12989/anr.2018.6.3.257.
- Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24(6), 579-586. http://dx.doi.org/10.12989/cac.2019.24.6.579.
- Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structure", ASME Appl. Mech. Rev., 60(5), 195-216. https://doi.org/10.1115/1.2777164.
- Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 1, 409-423. https://doi.org/10.12989/scs.2015.18.2.409.
- Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras A., Bousahla A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. http://dx.doi.org/10.12989/sem.2019.71.2.185.
- Chakraverty, S. and Pradhan, K.K. (2016), Vibration Of Functionally Graded Beams and Plates, Academic Press.
- Civalek, O. and Kiracioglu, O. (2010), "Free vibration analysis of Timoshenko beams by DSC method", Int. J. Numer. Meth. Bio., 26(12), 1890-1898. https://doi.org/10.1002/cnm.1279.
- Civalek, O. and Ozturk, B. (2010), "Free vibration analysis of tapered beam-column with pinned ends embedded in Winkler-Pasternak elastic foundation", Geomech. Eng., 2(1), 45-56. http://dx.doi.org/10.12989/gae.2010.2.1.045.
- Dewangan, H.C., Panda, S.K. and Sharma, N. (2020a), "Experimental validation of role of cut-out parameters on modal responses of laminated composite-a coupled FE approach", Int. J. Appl. Mech., 2050068. https://doi.org/10.1142/S1758825120500684.
- Dewangan, H.C., Sharma, N., Hirwani, C.K. and Panda, S.K. (2020b), "Numerical eigenfrequency and experimental verification of variable cutout (square/rectangular) borne layered glass/epoxy flat/curved panel structure", Mech. Bas. Des. Struct. Mach., 1-18. https://doi.org/10.1080/15397734.2020.1759432.
- Ebrahimi, F., Barati, M.R. and Civalek, O (2020), "Application of Chebyshev-Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures", Eng. Comput., 36, 953-964. https://doi.org/10.1007/s00366-019-00742-z.
- Hadji, L., Daouadji, T.H. and Bedia, E.A. (2015), "A refined exponential shear deformation theory for free vibration of FGM beam with porosities", Geomech. Eng.., 9(3), 361-372. https://doi.org/10.12989/gae.2015.9.3.361.
- Hadji, L., Daouadji, T.H., Tounsi, A. and Bedia, E.A. (2014), "A higher order shear deformation theory for static and free vibration of FGM beam", Steel Compos. Struct., 16(5), 507-519. http://dx.doi.org/10.12989/scs.2014.16.5.507.
- Han, M.S., Benaroya, H. and Wei, T. (1999), "Dynamics of transversely vibrating beams using four engineering theories", J. Sound Vib., 225, 935-988. https://doi.org/10.1006/jsvi.1999.2257.
- Hirwani, C.K. and Panda, S.K. (2019), "Nonlinear thermal free vibration frequency analysis of delaminated shell panel using FEM", Compos. Struct., 224, 111011. https://doi.org/10.1016/j.compstruct.2019.111011.
- Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comput. Concrete, 25(1), 37-57. http://dx.doi.org/10.12989/cac.2020.25.1.037.
- Kahya, V. and Turan, M. (2018), "Vibration and buckling of laminated beams by a multi-layer finite element model", Steel Compos. Struct., 28(4), 415-426. http://dx.doi.org/10.12989/scs.2018.28.4.415.
- Kieback, B., Neubrand, A. and Riedel, H. (2003), "Processing techniques for functionally graded materials", Mater. Sci. Eng. A, 362, 81-106. https://doi.org/10.1016/S0921-5093(03)00578-1.
- Koizumi, M. (1993), "The concept of FGM", Ceram. Tran. Funct. Grad. Mater., 34, 3-10. https://doi.org/10.1080/10426919508935030.
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28, 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
- Lee, J.W. and Lee, J.Y. (2019), "An exact transfer matrix method for coupled bending and bending vibrations of a twisted Timoshenko beam", Struct. Eng. Mech., 72(6), 797-807. http://dx.doi.org/10.12989/sem.2019.72.6.797.
- Li, S., Wan, Z. and Zhang, J. (2014), "Free vibration of functionally graded beams based on both classical and first-order shear deformation beam theories", Appl. Math. Mech., 35, 591-606. https://doi.org/10.1007/s10483-014-1815-6.
- Mahamood, R.M., Akinlabi, E.T., Shukla, M. and Pityana, S. (2012), "Functionally graded material: an overview", Proceedings of the World Congress on Engineering, Vol III, WCE 2012, London, UK.
- Mehar, K., Mishra, P.K. and Panda, S.K. (2020), "Numerical investigation of thermal frequency responses of graded hybrid smart nanocomposite (CNT-SMA-Epoxy) structure", Mech. Adv. Mater. Struct., 1-13. https://doi.org/10.1080/15376494.2020.1725193.
- Nejadi, M.M. and Mohammadimehr, M. (2020), "Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors", Comput. Concrete, 25(3), 215-224. https://doi.org/10.12989/cac.2020.25.3.215.
- Nguyen, T.K., Vo, T.P. and Thai, H.T. (2013), "Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory", Compos. B Eng., 55, 147-157. https://doi.org/10.1016/j.compositesb.2013.06.011.
- Pandey, H.K., Hirwani, C.K., Sharma, N., Katariya, P.V., Dewangan, H.C. and Panda, S.K. (2019), "Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses-An FEM approach and experimental verification", Adv. Nano Res., 7(6), 419-429. https://doi.org/10.12989/anr.2019.7.6.419.
- Patle, B.K., Hirwani, C.K., Singh, R.P. and Panda, S.K. (2018), "Eigenfrequency and deflection analysis of layered structure using uncertain elastic properties-a fuzzy finite element approach", Int. J. Approx. Reason., 98, 163-176. https://doi.org/10.1016/j.ijar.2018.04.013.
- Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory", Comput. Concrete, 25(3), 225-244. http://dx.doi.org/10.12989/cac.2020.25.3.225.
- Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875 https://doi.org/10.12989/scs.2019.33.6.865.
- Rao, S.S. (2007), Vibration of Continuous Systems, Wiley, New York, USA.
- Sahoo, S.S., Panda, S.K., Mahapatra, T.R. and Hirwani, C.K. (2019), "Numerical analysis of transient responses of delaminated layered structure using different mid-plane theories and experimental validation", Iran J. Sci. Technol. Tran. Mech. Eng., 43, 41-56. https://doi.org/10.1007/s40997-017-0111-3.
- Sahouane, A., Hadji, L. and Bourada, M. (2019), "Numerical analysis for free vibration of functionally graded beams using an original HSDBT", Earthq. Struct., 17(1), 31-37. https://doi.org/10.12989/eas.2019.17.1.031.
- Sahu, P., Sharma, N. and Panda, S.K. (2020), "Numerical prediction and experimental validation of free vibration responses of hybrid composite (Glass/Carbon/Kevlar) curved panel structure", Compos. Struct., 241, 112073. https://doi.org/10.1016/j.compstruct.2020.112073.
- Shokravi, M. (2017), "Vibration analysis of silica nanoparticles-reinforced concrete beams considering agglomeration effects", Comput. Concrete, 19(3), 333-338. http://dx.doi.org/10.12989/cac.2017.19.3.333.
- Suresh, S. and Mortensen, A. (1998), Fundamentals of Functionally Graded Materials: Processing and Thermomechanical Behavior of Graded Metals and Metal-Ceramic Composites, IOM Communications, London, UK.
- Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.0143
- Timoshenko, S.P. (1937), Vibration Problems in Engineering, D. Van Nostrand, Princeton, NJ, USA.
- Wang, J.R., Liu, T.L. and Chen, D.W. (2007), "Free vibration analysis of a Timoshenko beam carrying multiple spring-mass systems with the effects of shear deformation and rotary inertia", Struct Eng. Mech., 26(1), 1-14. http://dx.doi.org/10.12989/sem.2007.26.1.001.
- Wang, X. and Li, S. (2016), "Free vibration analysis of functionally graded material beams based on Levinson beam theory", Appl. Math. Mech., 37, 861-878. https://doi.org/10.1007/s10483-016-2094-9.
- Wattanasakulpong, N. and Ungbhakorn, V. (2012), "Free vibration analysis of functionally graded beams with general elastically end constraints by DTM", World J. Mech., 2, 297-310. https://doi.org/10.4236/wjm.2012.26036.
- Yildirim, V. and Kiral, E. (2000), "Investigation of the rotary inertia and shear deformation effects on the out-of-plane bending and torsional natural frequencies of laminated beams", Compos. Struct., 49(3), 313-320. https://doi.org/10.1016/S0263-8223(00)00063-5.
Cited by
- Coupled Vibration Characteristics Analysis of Hot Rolling Mill with Structural Gap vol.2021, 2020, https://doi.org/10.1155/2021/5581398
- Vibration behavior of bi-dimensional functionally graded beams vol.77, pp.5, 2020, https://doi.org/10.12989/sem.2021.77.5.587
- Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.281