과제정보
The first Author would like to acknowledge the support provided by the Directorate General for Scientific Research and Technological Development (DGRSDT).
참고문헌
- Abdulrazzaq, M.A. Kadhim, Z.D., Faleh, N.M. and Moustafa, N.M. (2020b), "A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads", Struct. Monit. Mainten., 7(1), 27-42. https://doi.org/10.12989/smm.2020.7.1.027
- Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020a), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147
- Abed, Z.A.K. and Majeed, W.I. (2020), "Effect of boundary conditions on harmonic response of laminated plates", Compos. Mater. Eng., 2(2), 125-140. https://doi.org/10.12989/cme.2020.2.2.125.
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
- Ajayan, P.M., Stephen, O., Colliex, C. and Trauth, D. (1994), "Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite", Sci., 256, 1212-1214. https://doi.org/10.1126/science.265.5176.1212.
- Al-Maliki, A.F.H., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Comput. Des., 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177.
- Al-Maliki, A.F.H., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Comput. Des., 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177.
- Al-Osta, M.A. (2019), "Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides", Comput. Concrete, 24(1), 37-49. https://doi.org/10.12989/cac.2019.24.1.037.
- Anil, K.L., Panda, S.K., Sharma, N., Hirwani, C.K. and Topal, U. (2020), "Optimal fiber volume fraction prediction of layered composite using frequency constraints-A hybrid FEM approach", Comput. Concrete, 25(4), 303-310. http://dx.doi.org/10.12989/cac.2020.25.4.303.
- Arani, A.J. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. http://dx.doi.org/10.12989/cac.2016.17.5.567.
- Asadi, H., Souri, M. and Wang, Q. (2017), "A numerical study on flow-induced instabilities of supersonic FG-CNT reinforced composite flat panels in thermal environments", Compos. Struct., 171, 113-125. https://doi.org/10.1016/j.compstruct.2017.02.003.
- Aslan, Z., Karakuzu, R. and Okutan, B. (2003), "The response of laminated composite plates under low-velocity impact loading", Compos. Struct., 59(1), 119-127. https://doi.org/10.1016/S0263-8223(02)00185-X.
- Avcar, M. (2016), "Free vibration of non-homogeneous beam subjected to axial force resting on pasternak foundation", J. Polytech.-Politeknik Dergisi., 19(4), 507-512. https://doi.org/10.2339/2016.19.4.507-512.
- Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2.
- Bakhshi, N. and Taheri-Behrooz, F. (2019), "Length effect on the stress concentration factor of a perforated orthotropic composite plate under in-plane loading", Compos. Mater. Eng., 1(1), 71-90. https://doi.org/10.12989/cme.2019.1.1.071.
- Barati, M.R. (2019), "Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading using nonlocal strain gradient theory", Struct. Eng. Mech., 64(6), 683-693. https://doi.org/10.12989/sem.2017.64.6.683.
- Barber, A.H., Cohen, S.R. and Wagner, H.D. (2003), "Measurement of carbon nanotube-polymer interfacial strength", Appl. Phys. Lett., 82, 4140-4152. https://doi.org/10.1063/1.1579568.
- Barouni, A.K. and Saravanos, D.A. (2016), "A layerwise semi-analytical method for modeling guided wave propagation in laminated and sandwich composite strips with induced surface excitation", Aerosp. Sci. Technol., 51, 118-141. https://doi.org/10.1016/j.ast.2016.01.023.
- Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Des., 3(3), 213-232. https://doi.org/10.12989/acd.2017.2.3.165.
- Cooper, C.A., Cohen, S.R., Barber, A.H. and Wagner, H.D. (2002), "Detachment of nanotubes from a polymer matrix", Appl. Phys. Lett., 81, 3873-3885. https://doi.org/10.1063/1.1521585.
- Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019), "Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel", Earthq. Struct., 16(1), 55-67. https://doi.org/10.12989/eas.2019.16.1.055.
- Dewangan, H.C., Sharma, N., Hirwani, C.K. and Panda, S.K. (2020), "Numerical eigenfrequency and experimental verification of variable cutout (square/rectangular) borne layered glass/epoxy flat/curved panel structure", Mech. Bas. Des. Struct. Mach., 3(2), 165-190. https://doi.org/10.1080/15397734.2020.1759432.
- Dihaj, A., Zidour, M., Meradjah, M., Rakrak, K., Heireche, H. and Chemi, A. (2018), "Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model", Struct. Eng. Mech., 65(3), 335-342. https://doi.org/10.12989/sem.2018.65.3.335.
- Duc, N.D., Cong, P.H., Tuan, N.D., Tran, P. and Van Thanh, N. (2017), "Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations", Thin Wall. Struct., 115, 300-310. https://doi.org/10.1016/j.tws.2017.02.016.
- Eltaher, M.A. and Mohamed, S.A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.
- Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: potential and current challenges", Mater. Des., 28, 2394-401. https://doi.org/10.1016/j.matdes.2006.09.022.
- Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 49-58. https://doi.org/10.12989/anr.2020.8.1.049.
- Ghannadpour, S.A.M. and Mehrparvar, M. (2020), "Modeling and evaluation of rectangular hole effect on nonlinear behavior of imperfect composite plates by an effective simulation technique", Compos. Mater. Eng., 2(1), 25-41. https://doi.org/10.12989/cme.2020.2.1.025.
- Hadji, L., Zouatnia, N. and Bernard, F. (2019), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231.
- Hamed, M.A., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.
- Hamidi, A., Zidour, M., Bouakkaz, K. and Bensattalah, T. (2018), "Thermal and small-scale effects on vibration of embedded armchair single-walled carbon nanotubes", J. Nano Res., 51, 24-38. https://doi.org/10.4028/www.scientific.net/JNanoR.51.24.
- Hanson, G.W. (2005), "Fundamental transmitting properties of carbon nanotube antennas", IEEE Tran. Anten. Propagat., 53(11), 3426-3435. https://doi.org/10.1109/TAP.2005.858865.
- Hirwani, C.K. and Panda, S.K. (2019), "Nonlinear finite element solutions of thermoelastic deflection and stress responses of internally damaged curved panel structure", Appl. Math. Model., 65, 303-317. https://doi.org/10.1016/j.apm.2018.08.014.
- Hone, J., Llaguno, M.C., Nemes, N.M., Johnson, A.T., Fischer, J.E., Walters, D.A. and Smalley, R.E. (2000), "Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films", Appl. Phys. Lett., 77(5), 666-668. https://doi.org/10.1063/1.127079.
- Jeyaraj, P. and Rajkumar, I. (2013), "Static behavior of FG-CNT polymer nano composite plate under elevated non-uniform temperature fields", Procedia Eng., 64, 825-834. https://doi.org/10.1016/j.proeng.2013.09.158.
- Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygro-thermo-mechanical loading", Steel Compos. Struct., 19(4), 1011-1033. http://dx.doi.org/10.12989/scs.2015.19.4.1011.
- Katariya, P.V. and Panda, S.K. (2019a), "Frequency and deflection responses of shear deformable Skew sandwich curved shell panel: A finite element approach", Arab. J. Sci. Eng., 44, 1631-1648. https://doi.org/10.1007/s13369-018-3633-0.
- Katariya, P.V. and Panda, S.K. (2019b), "Numerical frequency analysis of skew sandwich layered composite shell structures under thermal environment including shear deformation effects", Struct. Eng. Mech., 71(6), 657-668. http://dx.doi.org/10.12989/sem.2019.71.6.657.
- Katariya, P.V., Mehar, K. and Panda, S.K. (2020), "Nonlinear dynamic responses of layered skew sandwich composite structure and experimental validation", Int. J. Nonlin. Mech., 103527. https://doi.org/10.1016/j.ijnonlinmec.2020.103527.
- Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2018), "Bending and vibration analysis of skew sandwich plate", Aircraft Eng. Aerosp. Technol., 90(6), 885-895. https://doi.org/10.1108/AEAT-05-2016-0087.
- Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., 20(5), 595-605. https://doi.org/10.12989/sss.2017.20.5.595.
- Keleshteri, M.M., Asadi, H. and Wang, Q. (2017), "Large amplitude vibration of FG-CNT reinforced composite annular plates with integrated piezoelectric layers on elastic foundation", Thin Wall. Struct., 120, 203-214. https://doi.org/10.1016/j.tws.2017.08.035.
- Kiani, Y. (2016), "Shear buckling of FG-CNT reinforced composite plates using Chebyshev-Ritz method", Compos. Part B: Eng., 105, 176-187. https://doi.org/10.1016/j.compositesb.2016.09.001.
- Kiani, Y. (2017a), "Dynamics of FG-CNT reinforced composite cylindrical panel subjected to moving load", Thin Wall. Struct., 111, 48-57. https://doi.org/10.1016/j.tws.2016.11.011.
- Kiani, Y. (2017b), "Free vibration of carbon nanotube reinforced composite plate on point supports using Lagrangian multipliers", Meccanica., 52(6), 1353-1367. https://doi.org/10.1007/s11012-016-0466-3.
- Kiani, Y. (2017c), "Thermal buckling of temperature-dependent FG-CNT-reinforced composite skew plates", J. Therm. Stress., 40(11), 1442-1460. https://doi.org/10.1080/01495739.2017.1336742.
- Kiani, Y. (2018), "Thermal post-buckling of temperature dependent sandwich plates with FG-CNTRC face sheets", J. Therm. Stress., 41(7), 866-882. https://doi.org/10.1080/01495739.2018.1425645.
- Kiani, Y., Dimitri, R. and Tornabene, F. (2018), "Free vibration study of composite conical panels reinforced with FG-CNTs", Eng. Struct., 172, 472-482. https://doi.org/10.1016/j.engstruct.2018.06.006.
- Kunche, M.C., Mishra, P.K., Nallala, H.B., Hirwani, C.K., Katariya, P.V., Panda, S. and Panda, S.K. (2019), "Theoretical and experimental modal responses of adhesive bonded T-joints", Wind Struct., 29(5), 361-369. http://dx.doi.org/10.12989/was.2019.29.5.361.
- Lal, A., Jagtap, K.R. and Singh, B.N. (2017), "Thermo-mechanically induced finite element based nonlinear static response of elastically supported functionally graded plate with random system properties", Adv. Comput. Des., 2(3), 165-194. https://doi.org/10.12989/acd.2017.2.3.165.
- Lei, Z.X., Zhang, L.W. and Liew, K.M. (2015), "Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method", Compos. Struct., 127, 245-259. https://doi.org/10.1016/j.compstruct.2015.03.019.
- Li, H., Tu, S., Liu, Y., Lu, X. and Zhu, X. (2019), "Mechanical properties of L-joint with composite sandwich structure", Compos. Struct., 217, 165-174. https://doi.org/10.1016/j.compstruct.2019.03.011.
- Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.
- Mahapatra, T.R., Mehar, K., Panda, S.K., Dewangan, S. and Dash, S. (2017), "Flexural strength of functionally graded nanotube reinforced sandwich spherical panel", IOP Conf. Ser.: Mater. Sci. Eng., 178(1), 012031. https://doi.org/10.1088/1757-899X/178/1/012031.
- Mehar, K. and Panda, S.K. (2017a), "Thermoelastic analysis of FG-CNT reinforced shear deformable composite plate under various loading", Int. J. Comput. Meth., 14(2), 1750019. https://doi.org/10.1142/S0219876217500190.
- Mehar, K. and Panda, S.K. (2017b), "Nonlinear static behavior of FG-CNT reinforced composite flat panel under thermomechanical load", J. Aerosp. Eng., 30(3), 04016100. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000706.
- Mehar, K. and Panda, S.K. (2018a), "Thermoelastic flexural analysis of FG-CNT doubly curved shell panel", Aircraft Eng. Aerosp. Technol., 90(1), 11-23. https://doi.org/10.1108/AEAT-11-2015-0237.
- Mehar, K. and Panda, S.K. (2018b), "Elastic bending and stress analysis of carbon nanotube-reinforced composite plate: Experimental, numerical, and simulation", Adv. Polym. Technol., 37(6), 1643-1657. https://doi.org/10.1002/adv.21821.
- Mehar, K. and Panda, S.K. (2020), "Nonlinear deformation and stress responses of a graded carbon nanotube sandwich plate structure under thermoelastic loading", Acta Mech., 231, 1105-1123. https://doi.org/10.1007/s00707-019-02579-5.
- Mehar, K., Mishra, P.K. and Panda, S.K. (2020a), "Numerical investigation of thermal frequency responses of graded hybrid smart nanocomposite (CNT-SMA-Epoxy) structure", Mech. Adv. Mater. Struct., 1-13. https://doi.org/10.1080/15376494.2020.1725193.
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057.
- Mehar, K., Panda, S.K. and Patle, B.K. (2018), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409.
- Mehar, K., Panda, S.K. and Sharma, N. (2020b), "Numerical investigation and experimental verification of thermal frequency of carbon nanotube-reinforced sandwich structure", Eng. Struct., 211, 110444. https://doi.org/10.1016/j.engstruct.2020.110444.
- Merzoug, M., Bourada, M., Sekkal, M., Abir, A.C., Chahrazed, B., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. http://dx.doi.org/10.12989/gae.2020.22.4.361.
- Mirjavadi, S.S., Forsat, M., Barati, M.R., Abdella, G.M., Mohasel Afshari, B., Hamouda, A.M.S. and Rabby, S. (2019). "Dynamic response of metal foam FG porous cylindrical micro-shells due to moving loads with strain gradient size-dependency", Eur. Phys. J. Plus, 134(5), 1-11. https://doi.org/10.1140/epjp/i2019-12540-3.
- Mirzaei, M. and Kiani, Y. (2016), "Thermal buckling of temperature dependent FG-CNT reinforced composite plates", Meccanica. 51(9), 2185-2201. https://doi.org/10.1007/s11012-015-0348-0.
- Mohammadzadeh-Keleshteri, M., Asadi, H. and Aghdam, M.M. (2017), "Geometrical nonlinear free vibration responses of FG-CNT reinforced composite annular sector plates integrated with piezoelectric layers", Compos. Struct., 171, 100-112. https://doi.org/10.1016/j.compstruct.2017.01.048.
- Monge, J.C., Mantari, J.L., Yarasca, J. and Arciniega, R.A. (2019), "On bending response of doubly curved laminated composite shells using hybrid refined models", J. Appl. Comput. Mech., 5(5), 875-899. https://doi.org/10.22055/jacm.2019.27297.1397.
- Narwariya, M., Choudhury, A. and Sharma, A.K. (2018), "Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM", Adv. Comput. Des., 3(2), 113-132. https://doi.org/10.12989/acd.2018.3.2.113.
- Nebab, M., Ait Atmane, H., Bennai, R. and Tahar, B. (2019), "Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory", Earthq. Struct., 17(5), 447-462. https://doi.org/10.12989/eas.2019.17.5.447.
- Nejadi, M.M. and Mohammadimehr, M. (2020), "Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors", Comput. Concrete, 25(3), 215-224. https://doi.org/10.12989/cac.2020.25.3.215.
- Odegard, G.M., Gates, T.S., Wise, K.E., Park, C. and Siochi, E.J. (2003), "Constitutive modelling of nanotube-reinforced polymer composites", Compos. Sci. Technol., 63, 1671-1687. https://doi.org/10.1016/S0266-3538(03)00063-0.
- Othman, M. and Fekry, M. (2018), "Effect of rotation and gravity on generalized thermo-viscoelastic medium with voids", Multidisc. Model. Mater. Struct., 14(2), 322-338. https://doi.org/10.1108/MMMS-08-2017-0082.
- Panda, S.K. and Katariya, P.V. (2015), "Stability and Free Vibration Behaviour of Laminated Composite Panels Under Thermo-mechanical Loading", Int. J. Appl. Comput. Math., 1, 475-490. https://doi.org/10.1007/s40819-015-0035-9.
- Panda, S.K. and Singh, B.N. (2010), "Thermal post-buckling analysis of a laminated composite spherical shell panel embedded with shape memory alloy fibres using non-linear finite element method", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 224(4), 757-769. https://doi.org/10.1243/09544062JMES1809.
- Pandey, H.K., Agrawal, H., Panda, S.K., Hirwani, C.K., Katariya, P.V. and Dewangan, H.C. (2020), "Experimental and numerical bending deflection of cenosphere filled hybrid (Glass/Cenosphere/Epoxy) composite", Struct. Eng. Mech., 73(6), 715-724. http://dx.doi.org/10.12989/sem.2020.73.6.715.
- Pandey, H.K., Hirwani, C.K., Sharma, N., Katariya, P.V. and Panda, S.K. (2019), "Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses-An FEM approach and experimental verification", Adv. Nano Res., 7(6), 419-429. http://dx.doi.org/10.12989/anr.2019.7.6.419.
- Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural insulated panels: State-of-the-art", Trend. Civil Eng. Arch., 3(1) 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
- Patnaik, S.S., Swain, A. and Roy, T. (2020), "Creep compliance and micromechanics of multi-walled carbon nanotubes based hybrid composites", Compos. Mater. Eng., 2(2), 141-152. https://doi.org/10.12989/cme.2020.2.2.141.
- Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. http://dx.doi.org/10.12989/gae.2020.22.1.065.
- Rahmani, M., Mohammadi, Y., Kakavand, F. and Raeisifard, H. (2020), "Vibration analysis of different types of porous FG conical sandwich shells in various thermal surroundings", J. Appl. Comput. Mech., 6(3), 416-432. https://doi.org/10.22055/jacm.2019.29442.1598.
- Ranjbartoreh, A.R., Ghorbanpour, A. and Soltani, B. (2007), "Double-walled carbon nanotube with surrounding elastic medium under axial pressure", Physica E: Lowdimens. Syst. Nanostruct., 39(2), 230-239. https://doi.org/10.1016/j.physe.2007.04.010.
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd Edition, CRC Press, Taylor & Francis eBooks.
- Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Des., 3(2), 165-190. https://doi.org/10.12989/acd.2018.3.2.165.
- Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory", Earthq. Struct., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329.
- Sahmani, S. and Fattahi, A.M. (2017), "Nonlocal size dependency in nonlinear instability of axially loaded exponential shear deformable FG-CNT reinforced nanoshells under heat conduction", Eur. Phys. J. Plus, 132(5), 231. https://doi.org/10.1140/epjp/i2017-11497-5.
- Sahoo, S.S., Panda, S.K. and Singh, V.K. (2017), "Experimental and numerical investigation of static and free vibration responses of woven glass/epoxy laminated composite plate", Proc. Inst. Mech. Eng., Part L: J. Mater. Des., 231(5), 463-478. https://doi.org/10.1177/1464420715600191.
- Sahoo, S.S., Singh, V.K. and Panda, S.K. (2016), "Nonlinear flexural analysis of shallow carbon/epoxy laminated composite curved panels: experimental and numerical investigation", J. Eng. Mech., 142(4), 04016008. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001040.
- Sahouane, A., Hadji, L. and Bourada, M. (2019), "Numerical analysis for free vibration of functionally graded beams using an original HSDBT", Earthq. Struct., 17(1), 31-37. https://doi.org/10.12989/eas.2019.17.1.031.
- Sahu, P., Sharma, N. and Panda, S.K. (2020), "Numerical prediction and experimental validation of free vibration responses of hybrid composite (Glass/Carbon/Kevlar) curved panel structure", Compos. Struct., 241, 112073. https://doi.org/10.1016/j.compstruct.2020.112073.
- Sayyad, A. and Ghumare, S. (2019), "A new Quasi-3D model for functionally graded plates", J. Appl. Comput. Mech., 5(2), 367-380. https://doi.org/10.22055/jacm.2018.26739.1353.
- Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. https://doi.org/10.12989/anr.2019.7.5.365.
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments", Compos Struct., 91, 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
- Shokravi, M. (2017), "Buckling of sandwich plates with FG CNT-reinforced layers resting on orthotropic elastic medium using Reddy plate theory", Steel Compos. Struct., 23(6), 623-631. https://doi.org/10.12989/scs.2017.23.6.623.
- Shokrieh, M.M. and Kondori, M.S. (2020), "Effects of adding graphene nanoparticles in decreasing of residual stresses of carbon/epoxy laminated composites", Compos. Mater. Eng., 2(1), 53-64. https://doi.org/10.12989/cme.2020.2.1.053.
- Verma, K.L. (2013), "Wave propagation in laminated composite plates", Int. J. Adv. Struct. Eng., 5(1), 10. https://doi.org/10.1186/2008-6695-5-10.
- Vodenitcharova, T. and Zhang, L.C. (2006), "Bending and local buckling of a nanocomposite beam reinforced by a single-walled carbon nanotube", Int. J. Solid. Struct., 43, 3006-3024. https://doi.org/10.1016/j.ijsolstr.2005.05.014.
- Wattanasakulpong, N. and Chaikittiratana, A. (2015), "Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation", Appl. Math. Model., 39(18), 5459-5472. https://doi.org/10.1016/j.apm.2014.12.058.
- Xie, S., Li, W., Pan, Z., Chang, B. and Sun, L. (2000), "Mechanical and physical properties on carbon nanotube", J. Phys. Chem. Solid., 61(7), 1153-1158. https://doi.org/10.1016/S0022-3697(99)00376-5.
- Zhang, L.W., Lei, Z.X. and Liew, K.M. (2015), "Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach", Compos. Part B: Eng., 75, 36-46. https://doi.org/10.1016/j.compositesb.2015.01.033.
- Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94, 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010.
피인용 문헌
- New Treatment of the Rotary Motion of a Rigid Body with Estimated Natural Frequency vol.2020, 2020, https://doi.org/10.1155/2020/6629183
- Nonlinear Static Bending and Free Vibration Analysis of Bidirectional Functionally Graded Material Plates vol.2020, 2020, https://doi.org/10.1155/2020/8831366
- New Finite Modeling of Free and Forced Vibration Responses of Piezoelectric FG Plates Resting on Elastic Foundations in Thermal Environments vol.2021, 2020, https://doi.org/10.1155/2021/6672370
- Analytical Solution of Composite Curved I-Beam considering Tangential Slip under Uniform Distributed Load vol.2021, 2020, https://doi.org/10.1155/2021/4094753
- Free Vibration Investigations of Rotating FG Beams Resting on Elastic Foundation with Initial Geometrical Imperfection in Thermal Environments vol.2021, 2020, https://doi.org/10.1155/2021/5533920
- Study on the Dynamic Performance of Locally Resonant Plates with Elastic Unit Cell Edges vol.2021, 2021, https://doi.org/10.1155/2021/5541052
- A Refined Model for Analysis of Beams on Two-Parameter Foundations by Iterative Method vol.2021, 2021, https://doi.org/10.1155/2021/5562212
- Analysis of the Vibration of the Ground Surface by Using the Layered Soil: Viscoelastic Euler Beam Model due to the Moving Load vol.2021, 2020, https://doi.org/10.1155/2021/6619197
- Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer vol.38, pp.2, 2020, https://doi.org/10.12989/scs.2021.38.2.141
- Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates vol.10, pp.2, 2020, https://doi.org/10.12989/anr.2021.10.2.151
- Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.271
- Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.281
- A numerical solution to thermo‐mechanical behavior of temperature dependent rotating functionally graded annulus disks vol.93, pp.4, 2020, https://doi.org/10.1108/aeat-01-2021-0012
- Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157