DOI QR코드

DOI QR Code

Mismatch Negativity Using Frequency Difference in Healthy Young Adults: Latency and Amplitude

건강하고 젊은 성인에서 주파수 차이를 이용한 불일치음전위: 잠복기와 전위

  • Jung, Seokwon (Department of Neurology, Gyeongsang National University Hospital) ;
  • Kim, Young-Soo (Department of Neurology, Gyeongsang National University Hospital) ;
  • Yang, Tae-Won (Department of Neurology, Gyeongsang National University Changwon Hospital) ;
  • Kim, Do-Hyung (Department of Neurology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine) ;
  • Kim, Min Su (Department of Neurology, Gyeongsang National University Hospital) ;
  • Bae, Sang Hyeon (Department of Neurology, Gyeongsang National University Hospital) ;
  • Kim, Ga-In (Department of Neurology, Gyeongsang National University Hospital) ;
  • Kwon, Oh-Young (Department of Neurology, Gyeongsang National University Hospital)
  • 정석원 (경상대학교병원 신경과) ;
  • 김영수 (경상대학교병원 신경과) ;
  • 양태원 (창원경상대학교병원 신경과) ;
  • 김도형 (성균관대학교 삼성창원병원 신경과) ;
  • 김민수 (경상대학교병원 신경과) ;
  • 배상현 (경상대학교병원 신경과) ;
  • 김가인 (경상대학교병원 신경과) ;
  • 권오영 (경상대학교병원 신경과)
  • Received : 2020.06.23
  • Accepted : 2020.07.10
  • Published : 2020.09.30

Abstract

Latency and amplitude are the measurement parameters of mismatch negativity (MMN). The values of the parameters vary sensitively with the stimulus paradigm. A paradigm using the frequency difference of sounds for the MMN study is well known. This study obtained the reference values of the parameters in healthy young adults by performing the MMN study using the frequency paradigm. The authors recruited ten healthy adults. Their average age was 25.5 years; three were female, and seven were male. On the auditory paradigm for the MMN study, the frequency of sound was 1000 Hz for the standard stimulus, and 1032 Hz for the deviant stimulus. The mean values of latency and amplitude of MMN were 202 ms and 1.88 ㎶ at Fz, 207 ms, and 1.46 ㎶ at Cz, 212 ms, and 1.10 ㎶ at C3, and 214 ms and 1.45 ㎶ at C4. There was no correlation between the latency and amplitude of MMN. This study presented the reference values of the latency and amplitude of the MMN using a standard paradigm that is easy to apply. This information may make the MMN useful for clinical applications and basic research.

잠복기와 전위는 MMN의 측정 매개변수이다. 이 매개변수의 수치는 자극방안에 따라 민감하게 변한다. MMN 검사를 위해 주파수 차이를 자극변이로 이용하는 자극방안이 잘 알려져 있다. 이 자극방안을 이용하여 건강하고 젊은 성인에서 MMN 검사를 하고 매개변수의 참고치를 구하는 것이 본 연구의 목적이다. 저자들은 10명의 정상성인을 모집하였다. 이들의 연령은 평균 25.5세이고, 3명은 여성 7명은 남성이었다. MMN 검사를 위한 청각 자극방안에서 표준소리의 주파수는 1,000 Hz, 변이소리의 주파수는 1,032 Hz였다. MMN의 평균잠복기와 평균전위가 Fz에서 202 ms 와 1.88 ㎶, Cz에서 207 ms와 1.46 ㎶, C3에서 212 ms와 1.10 ㎶, 그리고 C4에서 214 ms와 1.45 ㎶였다. MMN의 잠복기와 전위사이에 상관성은 관찰되지 않았다. 본 연구는 적용하기 쉬운 표준자극방안으로 검사한 MMN의 잠복기와 전위의 참고치를 제시하였다. 이 정보는 임상과 기초연구에서 MMN의 유용성을 높일 것이다.

Keywords

References

  1. Naatanen R, Tervaniemi M, Sussman E, Paavilainen P, Winkler I. "Primitive intelligence" in the auditory cortex. Trends Neurosci. 2001;24:283-288. https://doi.org/10.1016/s0166-2236(00)01790-2
  2. Escera C, Leung S, Grimm S. Deviance detection based on regularity encoding along the auditory hierarchy: electrophysiological evidence in humans. Brain Topogr. 2014;27:527-538. https://doi.org/10.1007/s10548-013-0328-4
  3. Naatanen R, Escera C. Mismatch negativity: clinical and other applications. Audiol Neurootol. 2000;5:105-110. https://doi.org/13874 https://doi.org/10.1159/000013874
  4. Sams M, Paavilainen P, Alho K, Naatanen R. Auditory frequency discrimination and event-related potentials. Electroencephalogr Clin Neurophysiol. 1985;62:437-448. https://doi.org/10.1016/0168-5597(85)90054-1
  5. Pekkonen E. Mismatch negativity in aging and in Alzheimer's and Parkinson's diseases. Audiol Neurootol. 2000;5:216-224. https://doi.org/10.1159/000013883
  6. Fischer C, Morlet D, Giard M. Mismatch negativity and N100 in comatose patients. Audiol Neurootol. 2000;5:192-197. https://doi.org/10.1159/000013880
  7. Paavilainen P, Tiitinen H, Alho K, Naatanen R. Mismatch negativity to slight pitch changes outside strong attentional focus. Biol Psychol. 1993;37:23-41. https://doi.org/10.1016/0301-0511(93)90025-4
  8. Karayanidis F, Andrews S, Ward PB, Michie PT. ERP indices of auditory selective attention in aging and Parkinson's disease. Psychophysiology. 1995;32:335-350. https://doi.org/10.1111/j.1469-8986.1995.tb01216.x
  9. Pekkonen E, Rinne T, Naatanen R. Variability and replicability of the mismatch negativity. Electroencephalogr Clin Neurophysiol. 1995;96:546-554. https://doi.org/10.1016/0013-4694(95)00148-R
  10. Naatanen R. Processing negativity: an evoked-potential reflection of selective attention. Psychol Bull. 1982;92:605-640. https://doi.org/10.1037/0033-2909.92.3.605
  11. Ford JM, Roth WT, Kopell BS. Auditory evoked potentials to unpredictable shifts in pitch. Psychophysiology. 1976;13:32-39. https://doi.org/10.1111/j.1469-8986.1976.tb03333.x
  12. Duncan CC, Barry RJ, Connolly JF, Fischer C, Michie PT, Naatanen R, et al. Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol. 2009;120:1883-1908. https://doi.org/10.1016/j.clinph.2009.07.045
  13. Sams M, Alho K, et al. The mismatch negativity and information processing. In: Stelmach GE, Vroon PA, editors. Advances in psychology. Amsterdam: Elsevier; 1985. p161-176.
  14. Friedrich M, Weber C, Friederici AD. Electrophysiological evidence for delayed mismatch response in infants at-risk for specific language impairment. Psychophysiology. 2004;41:772-782. https://doi.org/10.1111/j.1469-8986.2004.00202.x
  15. Schulte-Korne G, Deimel W, Bartling J, Remschmidt H. Auditory processing and dyslexia: evidence for a specific speech processing deficit. Neuroreport. 1998;9:337-340. https://doi.org/10.1097/00001756-199801260-00029
  16. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; [cited by 2020 Mar 25]. Available from: https://www.R-project.org
  17. Duncan CC, Barry RJ, Connolly JF, Fischer C, Michie PT, Naatanen R, et al. Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol. 2009;120:1883-1908. https://doi.org/10.1016/j.clinph.2009.07.045
  18. Kim DS, Kim YB. A Topographically correlational study of P300 and MMN (mismatch negativity) in healthy subjects. Korean J Clin Lab Sci. 2007;39:256-263.
  19. Sanju HK, Mohanan A, Kumar P. Mismatch negativity. Indian Journal of Otology. 2015;21:81-87. https://doi.org/10.4103/0971-7749.155290
  20. Koles ZJ. Trends in EEG source localization. Electroencephalogr Clin Neurophysiol. 1998;106:127-137. https://doi.org/10.1016/S0013-4694(97)00115-6
  21. Dittmann-Balcar A, Juptner M, Jentzen W, Schall U. Dorsolateral prefrontal cortex activation during automatic auditory duration-mismatch processing in humans: a positron emission tomography study. Neurosci Lett. 2001;308:119-122. https://doi.org/10.1016/s0304-3940(01)01995-4
  22. Doeller CF, Opitz B, Mecklinger A, Krick C, Reith W, Schroger E. Prefrontal cortex involvement in preattentive auditory deviance detection: Neuroimaging and electrophysiological evidence. Neuroimage. 2003;20:1270-1282. https://doi.org/10.1016/S1053-8119(03)00389-6
  23. Deouell LY. The frontal generator of the mismatch negativity revisited. J Psychophysiology. 2007;21:188-203. https://doi.org/10.1027/0269-8803.21.34.188
  24. Rinne T, Alho K, Ilmoniemi R, Virtanen J, Naatanen R. Separate time behaviors of the temporal and frontal mismatch negativity sources. Neuroimage. 2000;12:14-19. https://doi.org/10.1006/nimg.2000.0591
  25. Schonwiesner M, Novitski N, Pakarinen S, Carlson S, Tervaniemi M, Naatanen R. Heschl's gyrus, posterior superior temporal gyrus, and mid-ventrolateral prefrontal cortex have different roles in the detection of acoustic changes. J Neurophysiol. 2007;97:2075-2082. https://doi.org/10.1152/jn.01083.2006
  26. Hay RA, Roach BJ, Srihari VH, Woods SW, Ford JM, Mathalon DH. Equivalent mismatch negativity deficits across deviant types in early illness schizophrenia-spectrum patients. Biol Psychol. 2015;105:130-137. https://doi.org/10.1016/j.biopsycho.2015.01.004