DOI QR코드

DOI QR Code

Analysis of Cell to Module Loss Factor for Shingled PV Module

  • Chowdhury, Sanchari (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Cho, Eun-Chel (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Cho, Younghyun (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kim, Youngkuk (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
  • Received : 2020.04.10
  • Accepted : 2020.09.01
  • Published : 2020.09.25

Abstract

Shingled technology is the latest cell interconnection technology developed in the photovoltaic (PV) industry due to its reduced resistance loss, low-cost, and innovative electrically conductive adhesive (ECA). There are several advantages associated with shingled technology to develop cell to module (CTM) such as the module area enlargement, low processing temperature, and interconnection; these advantages further improves the energy yield capacity. This review paper provides valuable insight into CTM loss when cells are interconnected by shingled technology to form modules. The fill factor (FF) had improved, further reducing electrical power loss compared to the conventional module interconnection technology. The commercial PV module technology was mainly focused on different performance parameters; the module maximum power point (Pmpp), and module efficiency. The module was then subjected to anti-reflection (AR) coating and encapsulant material to absorb infrared (IR) and ultraviolet (UV) light, which can increase the overall efficiency of the shingled module by up to 24.4%. Module fabrication by shingled interconnection technology uses EGaIn paste; this enables further increases in output power under standard test conditions. Previous research has demonstrated that a total module output power of approximately 400 Wp may be achieved using shingled technology and CTM loss may be reduced to 0.03%, alongside the low cost of fabrication.

Keywords

References

  1. Scientific American, 2013, "Sun-roof: solar panel shingles come down in price, gain in popularity", https://www.scientificamerican.com/article/im-getting-my-roof-redone-and-heard-about-solar-shingles/
  2. White, W., 2017, "Real Goods Solar, Inc. (RGSE) stock skyrockets on dow deal", https://finance.yahoo.com/news/real-goods-solar-inc-rgse-155428529.html
  3. Summhammer, J., and Halavani, Z., 2013, "High-voltage PV modules with crystalline silicon solar cells", Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition (28th EU PVSEC), 3119-3122.
  4. Beaucarne, G., 2016, "Materials challenge for shingled cells interconnection", Energy Procedia, 98, 115-124. https://doi.org/10.1016/j.egypro.2016.10.087
  5. Woehrl,. N., Lohmuller, E., Mittag, M., Moldovan, A., Baliozian, P., Fellmeth, T., Krauss, K., Kraft, A., and Preu, R., 2017, "Solar cell demand for bifacial and singulated-cell module architectures", 36th Photovoltaic International, 48-62.
  6. Baliozian, P., Lohmuller, E., Fellmeth, T., Wohrle, N., Krieg, A., and Preu, R., 2018 "Bifacial shingle solar cells on p-type Cz-Si (pSPEER)", AIP Conference Proceedings, 1999, 11002.
  7. Rabanal-Arabach, J., Rudolph, D., Ullmann, I., Halm, A., Schneider, A., and Fischer, T., 2017, "Cell-to-module conversion loss simulation for shingled-cell concept", Proceedings of the 33rd European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC), 178-182.
  8. Sung, E., and Zu-Li Liu, J., 2017, "Systems, method and apparatus for curing", U.S. Patent No. 9,748,434B1 (issued 29 August, 2017).
  9. Morad. R., Almogy. G., Suez. I., Hummel, J., Beckett, N., and Lin, Y., 2016, "Shingled solar cell module", U.S. Patent No. 9,484,484B2 (issued 1 November 2016).
  10. Radouane, K., Lutun, E., Binesti, D., Dupeyrat, P., Chiodetti, M., and Lindsay, A., 2015, "Key elements in the design of bifacial PV power plants", Proceedings of the 31st European Photovoltaic Solar Energy Conference and Exhibition, 1764-1769.
  11. Kreinin, L., Bordin, N., Karsenty, A., Drori, A., and Eisenberg, N., 2011, "Experimental analysis of the increases in energy generation of bifacial over monofacial PV modules" Proceedings of the 26th European Photovoltaics Solar Energy Conference and Exhibition, 3140-3143.
  12. Mittag, M., Zech, T., Wiese, M., Blasi, D., Ebert, M., and Wirth, H., 2017, "Cell-to-Module (CTM) analysis for photovoltaic modules with shingled solar cells", Proceedings of the IEEE 44th Photovoltaic Specialist Conference (PVSC), 1531-1536.
  13. Guo, S., Singh, J.P., Peters, M., Aberle, A.G., and Wong, J., 2016, "Two-dimensional current flow in stringed PV cells and its influence on the cell-to-module resistive losses", Solar Energy, 130, 224-231. https://doi.org/10.1016/j.solener.2016.02.012
  14. Kasahara, N., Yoshioka, K. and Saitoh, T., 2003, "Performance evaluation of bifacial photovoltaic modules for urban application", Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, 3, 2455-2458.
  15. Singh, J.P., Chai, J., Saw, M.H., and Khoo, Y.S., 2017, "Bifacial solar cell measurements under standard test conditions and the impact on cell-to-module loss analysis", Jpn. J. Appl. Phys., 56(8S2), 08MD04. https://doi.org/10.7567/JJAP.56.08MD04
  16. Green, M.A., Emery, K., King, D.L., and Igari, S., 2000, "Solar cell efficiency tables (version 15)", Prog. Photovolt: Res. Appl., 8(1), 187-195. https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<187::AID-PIP313>3.0.CO;2-1
  17. Singh, J.P., Khoo, Y.S., Chai, J., Liu, Z., and Wang, Y., 2016, "Cell-to-module power loss/gain analysis of silicon wafer-based PV modules", Photovoltaics International, 31, 98-105.
  18. Dickson, J.D.C., 1960, "Photo-voltaic semiconductor apparatus or the like", Hoffman Electronics Corp., U.S. Patent No. 2,938,938A (issued 31 May, 1960).
  19. Leinkram, C., Oaks, W., 1973, "Shingled array of solar cells", U.S. Secretary of Navy, U.S. Patent No. 3,769,091A (issued 30 October 1973).
  20. Romero, P., Otero, N., Coto, I., Leira, C., and Gonzalez, A., 2013, "Experimental study of diode laser cutting of silicon by means of water assisted thermally driven separation mechanism", Phys. Procedia, 41, 617-626. https://doi.org/10.1016/j.phpro.2013.03.124
  21. Shi, Z., Wenham, S., and Ji, J., 2009, "Mass production of the innovative PLUTO solar cell technology", Proceedings of the 34th IEEE Photovoltaic Specialists Conference (PVSC), 001922-001926.
  22. Wang, Z., Han, P., Lu, H., Qian, H., Chen, L., Meng, Q., Tang, N., Gao, F., Jiang, Y., Wu, J., et al., 2012, "Advanced PERC and PERL production cells with 20.3% record efficiency for standard commercial p-type silicon wafers", Prog. Photovolt: Res. Appl., 20(3), 260-268. https://doi.org/10.1002/pip.2178
  23. Muller, M., Altermatt, P.P., Wagner, H., and Fischer, G., 2013, "Sensitivity analysis of industrial multicrystalline PERC silicon solar cells by means of 3-D device simulation and metamodeling", IEEE J. Photovolt., 4(1), 107-113. https://doi.org/10.1109/JPHOTOV.2013.2287753
  24. Altermatt, P.P., and McIntosh, K.R., 2014, "A roadmap for PERC cell efficiency towards 22%, focused on technology-related constraints", Energy Procedia, 55, 17-21. https://doi.org/10.1016/j.egypro.2014.08.004
  25. Fischer, G., Strauch, K., Weber, T., Muller, M., Wolny, F., Schiepe, R., Fulle, A., Lottspeich, F., Steckemetz, S., Schneiderloechner, E., et al., 2014, "Simulation based development of industrial PERC cell production beyond 20.5% efficiency", Energy Procedia, 55, 425-430. https://doi.org/10.1016/j.egypro.2014.08.122
  26. Min, B., Wagner-Mohnsen, H., Muller, M., Neuhaus, H., Brendel, R. and Altermatt, P.P., 2015, "Incremental efficiency improvements of mass-produced PERC cells up to 24%, predicted solely with continuous development of existing technologies and wafer materials", Proceedings of the 31st European Photovoltaic Solar Energy Conference and Exhibition, 473-476.
  27. Rudolph, D., Rabanal-Arabach, J., Ullmann, I., Halm, A., Schneider, A., and Fischer, T., 2003, "Cell design optimization for shingled modules", Proceedings of the 33rd EU-PVSEC, 880-883.
  28. Klasen, N., Mondon, A., Kraft, A., and Eitner, U., 2017, "Shingled cell interconnection: A new generation of bifacial PV-modules", Proceedings of the 7th Workshop on Metallization and Interconnection for Crystalline Silicon Solar Cells.
  29. Zhao, J., Wang, A., Abbaspour-Sani, E., Yun, F., and Green, M.A., 1997, "Improved efficiency silicon solar cell module", IEEE Electron Device Letters, 18(2), 48-50 https://doi.org/10.1109/55.553040
  30. Izzi, M., Tucci, M., Veneri, P.D., Scalari, S., Proietti, D., Colletti, C., Balucani, M., and Serenelli, L., 2018, "AMPERE: An european project aimed to decrease the levelized cost of energy with innovative heterojunction bifacial module solution ready for the market", Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC), 569-572.

Cited by

  1. A Review on Degradation of Silicon Photovoltaic Modules vol.17, pp.1, 2020, https://doi.org/10.7849/ksnre.2021.2034
  2. A Review of the Degradation of Photovoltaic Modules for Life Expectancy vol.14, pp.14, 2020, https://doi.org/10.3390/en14144278