DOI QR코드

DOI QR Code

Ultrastructural changes of Haematococcus pluvialis (Chlorophyta) in process of astaxanthin accumulation and cell damage under condition of high light with acetate

  • He, Bangxiang (Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China (OUC)) ;
  • Hou, Lulu (Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China (OUC)) ;
  • Zhang, Feng (Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China (OUC)) ;
  • Cong, Xiaomei (Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China (OUC)) ;
  • Wang, Zhendong (Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China (OUC)) ;
  • Guo, Yalin (Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China (OUC)) ;
  • Shi, Jiawei (Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China (OUC)) ;
  • Jiang, Ming (Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China (OUC)) ;
  • Zhang, Xuecheng (Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China (OUC)) ;
  • Zang, Xiaonan (Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China (OUC))
  • Received : 2020.02.23
  • Accepted : 2020.05.22
  • Published : 2020.09.21

Abstract

Haematococcus pluvialis is a commercial microalga that can produce high quantities of astaxanthin. Under induced conditions, some important changes in the subcellular structures related to astaxanthin accumulation were observable. For example, a large number of astaxanthin granules, oil structures and starch granules appeared in the thick-walled cells; Astaxanthin granules gradually dissolved into the oil structures and spread throughout the entire cell with the fusion and diffusion process of oil structures during the middle and late stages of induction; The plastoglobules were closed to the newly formed structures, and some plastoglobules would abnormally increase in size under stress. Based on observations of cell damage, the degradation of membrane structures, such as chloroplasts, was found to be the primary form of damage during the early stage of induction. During the middle stage of induction, some transparent holes were exposed in the dissolving astaxanthin granules in the cytoplasm. In thick-walled cells, these transparent holes were covered by oil substances dissolving astaxanthin, thereby avoiding further damage to cells. Given the relatively few oil structures, in non-thick-walled cells, the transparent holes expanded to form multiple transparent areas, eventually resulting in the rupture and death of cells. These results suggested that the high level of synthesis and the wide range diffusion of oil explained the expansion of astaxanthin in H. pluvialis.

Keywords

References

  1. Ambati, R., Phang, S. M., Ravi, S. & Aswathanarayana, R. G. 2014. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications-a review. Mar. Drugs 12:128-152. https://doi.org/10.3390/md12010128
  2. Austin, J. R., Frost, E., Vidi, P. -A., Kessler, F. & Staehelin, L. A. 2006. Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18:1693-1703. https://doi.org/10.1105/tpc.105.039859
  3. Boussiba, S. 2000. Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol. Plant. 108:111-117. https://doi.org/10.1034/j.1399-3054.2000.108002111.x
  4. Brehelin, C., Kessler, F. & van Wijk, K. J. 2007. Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci. 12:260-266. https://doi.org/10.1016/j.tplants.2007.04.003
  5. Chen, G., Wang, B., Han, D., Sommerfeld, M., Lu, Y., Chen, F. & Hu, Q. 2015. Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis (Chlorophyceae). Plant J. 81:95-107. https://doi.org/10.1111/tpj.12713
  6. Damiani, M. C., Leonardi, P. I., Pieroni, O. I. & Caceres, E. J. 2006. Ultrastructure of the cyst wall of Haematococcus pluvialis (Chlorophyceae): wall development and behaviour during cyst germination. Phycologia 45:616-623. https://doi.org/10.2216/05-27.1
  7. Deruere, J., Romer, S., d'Harlingue, A., Backhaus, R. A., Kuntz, M. & Camara, B. 1994. Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. Plant Cell 6:119-133. https://doi.org/10.1105/tpc.6.1.119
  8. Evens, T. J., Niedz, R. P. & Kirkpatrick, G. J. 2008. Temperature and irradiance impacts on the growth, pigmentation and photosystem II quantum yields of Haematococcus pluvialis (Chlorophyceae). J. Appl. Phycol. 20:411-422. https://doi.org/10.1007/s10811-007-9277-1
  9. Fabregas, J., Dominguez, A., Maseda, A. & Otero, A. 2003. Interactions between irradiance and nutrient availability during astaxanthin accumulation and degradation in Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 61:545-551. https://doi.org/10.1007/s00253-002-1204-4
  10. Fatima Santos, M. & Mesquita, J. F. 1984. Ultrastructural study of Haematococcus lacustris (Girod.) Rostafinski (Volvocales). I. Some aspects of carotenogenesis. Cytologia 49:215-228. https://doi.org/10.1508/cytologia.49.215
  11. Focsan, A. L., Polyakov, N. E. & Kispert, L. D. 2017. Photo protection of Haematococcus pluvialis algae by astaxanthin: unique properties of astaxanthin deduced by EPR, optical and electrochemical studies. Antioxidants (Basel) 6:80. https://doi.org/10.3390/antiox6040080
  12. Grunewald, K., Hirschberg, J. & Hagen, C. 2001. Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis. J. Biol. Chem. 276:6023-6029. https://doi.org/10.1074/jbc.M006400200
  13. Gwak, Y., Hwang, Y. -S., Wang, B., Kim, M., Jeong, J., Lee, C. -G., Hu, Q., Han, D. & Jin, E. 2014. Comparative analyses of lipidomes and transcriptomes reveal a concerted action of multiple defensive systems against photooxidative stress in Haematococcus pluvialis. J. Exp. Bot. 65:4317-4334. https://doi.org/10.1093/jxb/eru206
  14. Han, D., Wang, J., Sommerfeld, M. & Hu, Q. 2012. Susceptibility and protective mechanisms of motile and nonmotile cells of Haematococcus pluvialis (Chlorophyceae) to photooxidative stress. J. Phycol. 48:693-705. https://doi.org/10.1111/j.1529-8817.2012.01147.x
  15. Holtin, K., Kuehnle, M., Rehbein, J., Schuler, P., Nicholson, G. & Albert, K. 2009. Determination of astaxanthin and astaxanthin esters in the microalgae Haematococcus pluvialis by LC-(APCI) MS and characterization of predominant carotenoid isomers by NMR spectroscopy. Anal. Bioanal. Chem. 395:1613-1622. https://doi.org/10.1007/s00216-009-2837-2
  16. Imamoglu, E., Dalay, M. C. & Sukan, F. V. 2009. Influences of different stress media and high light intensities on accumulation of astaxanthin in the green alga Haematococcus pluvialis. N. Biotechnol. 26:199-204. https://doi.org/10.1016/j.nbt.2009.08.007
  17. Kobayashi, M., Kakizono, T. & Nagai, S. 1993. Enhanced carotenoid biosynthesis by oxidative stress in acetateinduced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl. Environ. Microbiol. 59:867-873. https://doi.org/10.1128/AEM.59.3.867-873.1993
  18. Kobayashi, M., Kakizono, T., Nishio, N., Nagai, S., Kurimura, Y. & Tsuji, Y. 1997. Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 48:351-356. https://doi.org/10.1007/s002530051061
  19. Kobayashi, M. & Sakamoto, Y. 1999. Singlet oxygen quenching ability of astaxanthin esters from the green alga Haematococcus pluvialis. Biotechnol. Lett. 21:265-269. https://doi.org/10.1023/A:1005445927433
  20. Lohscheider, J. N. & Rio Bartulos, C. 2016. Plastoglobules in algae: a comprehensive comparative study of the presence of major structural and functional components in complex plastids. Mar. Genomics 28:127-136. https://doi.org/10.1016/j.margen.2016.06.005
  21. Lorenz, R. T. & Cysewski, G. R. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18:160-167. https://doi.org/10.1016/S0167-7799(00)01433-5
  22. Naguib, Y. M. 2000. Antioxidant activities of astaxanthin and related carotenoids. J. Agric. Food Chem. 48:1150-1154. https://doi.org/10.1021/jf991106k
  23. Ota, S., Morita, A., Ohnuki, S., Hirata, A., Sekida, S., Okuda, K., Ohya, Y. & Kawano, S. 2018. Carotenoid dynamics and lipid droplet containing astaxanthin in response to light in the green alga Haematococcus pluvialis. Sci. Rep. 8:5617. https://doi.org/10.1038/s41598-018-23854-w
  24. Rottet, S., Besagni, C. & Kessler, F. 2015. The role of plastoglobules in thylakoid lipid remodeling during plant development. Biochim. Biophys. Acta 1847:889-899. https://doi.org/10.1016/j.bbabio.2015.02.002
  25. Shanmugabalaji, V., Besagni, C., Piller, L. E., Douet, V., Ruf, S., Bock, R. & Kessler, F. 2013. Dual targeting of a mature plastoglobulin/fibrillin fusion protein to chloroplast plastoglobules and thylakoids in transplastomic tobacco plants. Plant Mol. Biol. 81:13-25. https://doi.org/10.1007/s11103-012-9977-z
  26. Steinmuller, D. & Tevini, M. 1985. Composition and function of plastoglobuli. Planta 163:201-207. https://doi.org/10.1007/BF00393507
  27. Tripathi, U., Sarada, R., Rao, S. R. & Ravishankar, G. A. 1999. Production of astaxanthin in Haematococcus pluvialis cultured in various media. Bioresour. Technol. 68:197-199. https://doi.org/10.1016/S0960-8524(98)00143-6
  28. Vidi, P. -A., Kessler, F. & Brehelin, C. 2007. Plastoglobules: a new address for targeting recombinant proteins in the chloroplast. BMC Biotechnol. 7:4. https://doi.org/10.1186/1472-6750-7-4
  29. Vishnevetsky, M., Ovadis, M. & Vainstein, A. 1999. Carotenoid sequestration in plants: the role of carotenoidassociated proteins. Trends Plant Sci. 4:232-235. https://doi.org/10.1016/S1360-1385(99)01414-4
  30. Wang, B., Zarka, A., Trebst, A. & Boussiba, S. 2010. Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. J. Phycol. 39:1116-1124. https://doi.org/10.1111/j.0022-3646.2003.03-043.x
  31. Wayama, M., Ota, S., Matsuura, H., Nango, N., Hirata, A. & Kawano, S. 2013. Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis. PLoS ONE 8:e53618. https://doi.org/10.1371/journal.pone.0053618
  32. Ytterberg, A. J., Peltier, J. -B. & van Wijk, K. J. 2006. Protein profiling of plastoglobules in chloroplasts and chromoplasts: a surprising site for differential accumulation of metabolic enzymes. Plant Physiol. 140:984-997. https://doi.org/10.1104/pp.105.076083
  33. Yuan, J. -P. & Chen, F. 2000. Purification of trans-astaxanthin from a high-yielding astaxanthin ester-producing strain of the microalga Haematococcus pluvialis. Food Chem. 68:443-448. https://doi.org/10.1016/S0308-8146(99)00219-8