References
- Ambati, R., Phang, S. M., Ravi, S. & Aswathanarayana, R. G. 2014. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications-a review. Mar. Drugs 12:128-152. https://doi.org/10.3390/md12010128
- Austin, J. R., Frost, E., Vidi, P. -A., Kessler, F. & Staehelin, L. A. 2006. Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18:1693-1703. https://doi.org/10.1105/tpc.105.039859
- Boussiba, S. 2000. Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol. Plant. 108:111-117. https://doi.org/10.1034/j.1399-3054.2000.108002111.x
- Brehelin, C., Kessler, F. & van Wijk, K. J. 2007. Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci. 12:260-266. https://doi.org/10.1016/j.tplants.2007.04.003
- Chen, G., Wang, B., Han, D., Sommerfeld, M., Lu, Y., Chen, F. & Hu, Q. 2015. Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis (Chlorophyceae). Plant J. 81:95-107. https://doi.org/10.1111/tpj.12713
- Damiani, M. C., Leonardi, P. I., Pieroni, O. I. & Caceres, E. J. 2006. Ultrastructure of the cyst wall of Haematococcus pluvialis (Chlorophyceae): wall development and behaviour during cyst germination. Phycologia 45:616-623. https://doi.org/10.2216/05-27.1
- Deruere, J., Romer, S., d'Harlingue, A., Backhaus, R. A., Kuntz, M. & Camara, B. 1994. Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. Plant Cell 6:119-133. https://doi.org/10.1105/tpc.6.1.119
- Evens, T. J., Niedz, R. P. & Kirkpatrick, G. J. 2008. Temperature and irradiance impacts on the growth, pigmentation and photosystem II quantum yields of Haematococcus pluvialis (Chlorophyceae). J. Appl. Phycol. 20:411-422. https://doi.org/10.1007/s10811-007-9277-1
- Fabregas, J., Dominguez, A., Maseda, A. & Otero, A. 2003. Interactions between irradiance and nutrient availability during astaxanthin accumulation and degradation in Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 61:545-551. https://doi.org/10.1007/s00253-002-1204-4
- Fatima Santos, M. & Mesquita, J. F. 1984. Ultrastructural study of Haematococcus lacustris (Girod.) Rostafinski (Volvocales). I. Some aspects of carotenogenesis. Cytologia 49:215-228. https://doi.org/10.1508/cytologia.49.215
- Focsan, A. L., Polyakov, N. E. & Kispert, L. D. 2017. Photo protection of Haematococcus pluvialis algae by astaxanthin: unique properties of astaxanthin deduced by EPR, optical and electrochemical studies. Antioxidants (Basel) 6:80. https://doi.org/10.3390/antiox6040080
- Grunewald, K., Hirschberg, J. & Hagen, C. 2001. Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis. J. Biol. Chem. 276:6023-6029. https://doi.org/10.1074/jbc.M006400200
- Gwak, Y., Hwang, Y. -S., Wang, B., Kim, M., Jeong, J., Lee, C. -G., Hu, Q., Han, D. & Jin, E. 2014. Comparative analyses of lipidomes and transcriptomes reveal a concerted action of multiple defensive systems against photooxidative stress in Haematococcus pluvialis. J. Exp. Bot. 65:4317-4334. https://doi.org/10.1093/jxb/eru206
- Han, D., Wang, J., Sommerfeld, M. & Hu, Q. 2012. Susceptibility and protective mechanisms of motile and nonmotile cells of Haematococcus pluvialis (Chlorophyceae) to photooxidative stress. J. Phycol. 48:693-705. https://doi.org/10.1111/j.1529-8817.2012.01147.x
- Holtin, K., Kuehnle, M., Rehbein, J., Schuler, P., Nicholson, G. & Albert, K. 2009. Determination of astaxanthin and astaxanthin esters in the microalgae Haematococcus pluvialis by LC-(APCI) MS and characterization of predominant carotenoid isomers by NMR spectroscopy. Anal. Bioanal. Chem. 395:1613-1622. https://doi.org/10.1007/s00216-009-2837-2
- Imamoglu, E., Dalay, M. C. & Sukan, F. V. 2009. Influences of different stress media and high light intensities on accumulation of astaxanthin in the green alga Haematococcus pluvialis. N. Biotechnol. 26:199-204. https://doi.org/10.1016/j.nbt.2009.08.007
- Kobayashi, M., Kakizono, T. & Nagai, S. 1993. Enhanced carotenoid biosynthesis by oxidative stress in acetateinduced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl. Environ. Microbiol. 59:867-873. https://doi.org/10.1128/AEM.59.3.867-873.1993
- Kobayashi, M., Kakizono, T., Nishio, N., Nagai, S., Kurimura, Y. & Tsuji, Y. 1997. Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 48:351-356. https://doi.org/10.1007/s002530051061
- Kobayashi, M. & Sakamoto, Y. 1999. Singlet oxygen quenching ability of astaxanthin esters from the green alga Haematococcus pluvialis. Biotechnol. Lett. 21:265-269. https://doi.org/10.1023/A:1005445927433
- Lohscheider, J. N. & Rio Bartulos, C. 2016. Plastoglobules in algae: a comprehensive comparative study of the presence of major structural and functional components in complex plastids. Mar. Genomics 28:127-136. https://doi.org/10.1016/j.margen.2016.06.005
- Lorenz, R. T. & Cysewski, G. R. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18:160-167. https://doi.org/10.1016/S0167-7799(00)01433-5
- Naguib, Y. M. 2000. Antioxidant activities of astaxanthin and related carotenoids. J. Agric. Food Chem. 48:1150-1154. https://doi.org/10.1021/jf991106k
- Ota, S., Morita, A., Ohnuki, S., Hirata, A., Sekida, S., Okuda, K., Ohya, Y. & Kawano, S. 2018. Carotenoid dynamics and lipid droplet containing astaxanthin in response to light in the green alga Haematococcus pluvialis. Sci. Rep. 8:5617. https://doi.org/10.1038/s41598-018-23854-w
- Rottet, S., Besagni, C. & Kessler, F. 2015. The role of plastoglobules in thylakoid lipid remodeling during plant development. Biochim. Biophys. Acta 1847:889-899. https://doi.org/10.1016/j.bbabio.2015.02.002
- Shanmugabalaji, V., Besagni, C., Piller, L. E., Douet, V., Ruf, S., Bock, R. & Kessler, F. 2013. Dual targeting of a mature plastoglobulin/fibrillin fusion protein to chloroplast plastoglobules and thylakoids in transplastomic tobacco plants. Plant Mol. Biol. 81:13-25. https://doi.org/10.1007/s11103-012-9977-z
- Steinmuller, D. & Tevini, M. 1985. Composition and function of plastoglobuli. Planta 163:201-207. https://doi.org/10.1007/BF00393507
- Tripathi, U., Sarada, R., Rao, S. R. & Ravishankar, G. A. 1999. Production of astaxanthin in Haematococcus pluvialis cultured in various media. Bioresour. Technol. 68:197-199. https://doi.org/10.1016/S0960-8524(98)00143-6
- Vidi, P. -A., Kessler, F. & Brehelin, C. 2007. Plastoglobules: a new address for targeting recombinant proteins in the chloroplast. BMC Biotechnol. 7:4. https://doi.org/10.1186/1472-6750-7-4
- Vishnevetsky, M., Ovadis, M. & Vainstein, A. 1999. Carotenoid sequestration in plants: the role of carotenoidassociated proteins. Trends Plant Sci. 4:232-235. https://doi.org/10.1016/S1360-1385(99)01414-4
- Wang, B., Zarka, A., Trebst, A. & Boussiba, S. 2010. Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. J. Phycol. 39:1116-1124. https://doi.org/10.1111/j.0022-3646.2003.03-043.x
- Wayama, M., Ota, S., Matsuura, H., Nango, N., Hirata, A. & Kawano, S. 2013. Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis. PLoS ONE 8:e53618. https://doi.org/10.1371/journal.pone.0053618
- Ytterberg, A. J., Peltier, J. -B. & van Wijk, K. J. 2006. Protein profiling of plastoglobules in chloroplasts and chromoplasts: a surprising site for differential accumulation of metabolic enzymes. Plant Physiol. 140:984-997. https://doi.org/10.1104/pp.105.076083
- Yuan, J. -P. & Chen, F. 2000. Purification of trans-astaxanthin from a high-yielding astaxanthin ester-producing strain of the microalga Haematococcus pluvialis. Food Chem. 68:443-448. https://doi.org/10.1016/S0308-8146(99)00219-8