Acknowledgement
The authors gratefully acknowledge the various support staff of their respective organizations who have helped make this work possible.
References
- Carrica, P.M., Kim, Y. and Martin, J.E. (2019), "Near-surface self propulsion of a generic submarine in calm water and waves", Ocean Eng., 183, 87-105. https://doi.org/10.1016/j.oceaneng.2019.04.082.
- Dubbioso, G., Broglia, R. and Zaghi, S. (2017), "CFD analysis of turning abilities of a submarine model", Ocean Eng., 129, 459-479. https://doi.org/10.1016/j.oceaneng.2016.10.046.
- Fureby, C. and Norrison, D. (2019), "RANS, DES and LES of the Flow Past the 6: 1 Prolate Spheroid at 10 and 20 Angle of Incidence", in: AIAA Scitech 2019 Forum. p. 85. https://doi.org/10.2514/6.2019-0085.
- Groves, N.C., Huang, T.T. and Chang, M.S. (1989), Geometric characteristics of DARPA (Defense Advanced Research Projects Agency) SUBOFF models (DTRC model numbers 5470 and 5471). David Taylor Research Center Bethesda MD Ship Hydromechanics Dept.
- Huang, T., Liu, H.L., Groves, N., Forlini, T., Blanton, J., Gowing, S. and Liu, H.L. (1994), Measurements of flows over an axisymmetric body with various appendages in a wind tunnel: the DARPA SUBOFF experimental program.
- Jimenez, J.M., Reynolds, R.T., Smits, A.J., JimASnez, J.M., Reynolds, R.T., Smits, A.J., (2010), "The effects of fins on the intermediate wake of a submarine model", J. Fluids Eng., 132, 31102. https://doi.org/10.1115/1.4001010
- Liu, Z., Xiong, Y., Wang, Z., Song, W. and Tu, C. (2010), "Numerical simulation and experimental study of the new method of horseshoe vortex control", J. Hydrodyn. Ser. B, 22, 572-581. https://doi.org/10.1016/S1001-6058(09)60090-1.
- Liu, Z., Xiong, Y., Wang, Z., Wang, S. and Tu, C. (2011), "Experimental study on effect of a new vortex control baffler and its influencing factor", China Ocean Eng., 25, 83-96. https://doi.org/10.1007/s13344-011-0007-8.
- Pan, Y., Zhang, H. and Zhou, Q. (2019), "Numerical simulation of unsteady propeller force for a submarine in straight ahead sailing and steady diving maneuver", 1-15. https://doi.org/10.1016/j.ijnaoe.2019.04.002
- Posa, A. and Balaras, E. (2016), "A numerical investigation of the wake of an axisymmetric body with appendages", J. Fluid Mech., 792, 470-498. https://doi.org/10.1017/jfm.2016.47.
- Posa, A., Broglia, R., Felli, M., Falchi, M. and Balaras, E. (2019), "Characterization of the wake of a submarine propeller via Large-Eddy simulation", Comput. Fluids, 184, 138-152. https://doi.org/10.1016/j.compfluid.2019.03.011.
- Rao, Z. and Yang, C. (2017), "Numerical prediction of effective wake field for a submarine based on a hybrid approach and an RBF interpolation", J. Hydrodyn., 29, 691-701. https://doi.org/10.1016/S1001-6058(16)60781-3.
- Zhang, J., Zhao, F., Hong, F. and Xu, J. (2003), "Towing PIV and its application on the juncture forms of stern appendage with main-body", in: Optical Technology and Image Processing for Fluids and Solids Diagnostics 2002. International Society for Optics and Photonics, 208-213. https://doi.org/10.1117/12.509746.
- Zhihua, L., Ying, X. and Chengxu, T. (2011), "Numerical simulation and control of horseshoe vortex around an appendage-body junction", J. Fluids Struct., 27, 23-42. https://doi.org/10.1016/j.jfluidstructs.2010.08.006.