References
- Affdl, J.H. and Kardos, J.L. (1976), "The HalpinTsai equations: a review", Polym. Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512.
- Akbarov, S.D., Guliyev, H.H. and Yahnioglu, N. (2016), "Natural vibration of the three-layered solid sphere with middle layer made of FGM: three-dimensional approach", Struct. Eng. Mech., 57(2), 239-263. http://dx.doi.org/10.12989/sem.2016.57.2.239.
- Anirudh, B., Ganapathi, M., Anant, C. and Polit, O. (2019), "A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: Bending, vibration and buckling", Compos. Struct., 222, p.110899. https://doi.org/10.1016/j.compstruct.2019.110899.
- Ansari, R., Torabi, J. and Shojaei, M.F. (2016), "Vibrational analysis of functionally graded carbon nanotube-reinforced composite spherical shells resting on elastic foundation using the variational differential quadrature method", Eur. J. Mech. A-Solid., 60, 166-182. https://doi.org/10.1016/j.euromechsol.2016.07.003.
- Artioli, E. and Viola, E. (2005), "Static analysis of shear-deformable shells of revolution via GDQ method", Struct. Eng. Mech., 19(4), 459-475. https://doi.org/10.12989/sem.2005.19.4.459.
- Artioli, E. and Viola, E. (2006), "Free vibration analysis of spherical caps using a GDQ numerical solution", J. Press. Vess-T. Asme., 128(3), 370-378. https://doi.org/10.1115/1.2217970.
- Cadelano, E., Palla, P.L., Giordano, S. and Colombo, L., (2009), "Nonlinear elasticity of monolayer graphene", Phys. Rev. Lett., 102(23), p.235502. https://doi.org/10.1103/PhysRevLett.102.235502.
- Chandra, Y., Chowdhury, R., Scarpa, F., Adhikari, S., Sienz, J., Arnold, C., Murmu, T. and Bould, D. (2012), "Vibration frequency of graphene based composites: a multiscale approach", Mat. Sci. Eng. B-Adv., 177(3), 303-310. https://doi.org/10.1016/j.mseb.2011.12.024.
- Dong, Y.H., Zhu, B., Wang, Y., Li, Y.H. and Yang, J. (2018), "Nonlinear free vibration of graded graphene reinforced cylindrical shells: Effects of spinning motion and axial load", J. Sound. Vib., 437, 79-96. https://doi.org/10.1016/j.jsv.2018.08.036.
- Dong, Y.H., Li, Y.H., Chen, D. and Yang, J. (2018), "Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion", Compos. Part. B-Eng., 145, 1-13. https://doi.org/10.1016/j.compositesb.2018.03.009.
- Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs)", Eng. Struct., 140, 110-119. https://doi.org/10.1016/j.engstruct.2017.02.052.
- Gao, K., Gao, W., Chen, D. and Yang, J. (2018), "Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation", Compos. Struct., 204, 831-846. https://doi.org/10.1016/j.compstruct.2018.08.013.
- Gholami, R. and Ansari, R. (2018), "Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates", Eng. Struct., 156, 197-209. https://doi.org/10.1016/j.engstruct.2017.11.019.
- Gholami, R. and Ansari, R. (2019), "Nonlinear stability and vibration of pre/post-buckled multilayer FG-GPLRPC rectangular plates", Appl. Math. Model., 65, 627-660. https://doi.org/10.1016/j.apm.2018.08.038.
- Guo, H., Cao, S., Yang, T. and Chen, Y. (2018), "Vibration of laminated composite quadrilateral plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method", Int. J. Mech. Sci., 142, 610-621. https://doi.org/10.1016/j.ijmecsci.2018.05.029.
- Javani, M., Kiani, Y., Sadighi, M. and Eslami, M.R. (2019), "Nonlinear vibration behavior of rapidly heated temperature-dependent FGM shallow spherical shells", AIAA. J., 57(9), 4071-4084. https://doi.org/10.2514/1.J058240.
- Kar, V.R. and Panda, S.K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel. Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693.
- Kiani, Y. (2018), "Isogeometric large amplitude free vibration of graphene reinforced laminated plates in thermal environment using NURBS formulation", Comput. Method. Appl. M., 332, 86-101. https://doi.org/10.1016/j.cma.2017.12.015.
- Kiani, Y. and Mirzaei, M. (2019), "Isogeometric thermal postbuckling of FG-GPLRC laminated plates", Steel and Compos. Struct., 32(6), 821-832. https://doi.org/10.12989/scs.2019.32.6.821.
- Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Design., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
- Kulkarni, Dhaval D., Ikjun Choi, Srikanth S. Singamaneni, and Vladimir V. Tsukruk. (2010) "Graphene oxide- polyelectrolyte nanomembranes", ACS. Nano., 4(8) 4667-4676. https://doi.org/10.1021/nn101204d.
- Liu, D., Kitipornchai, S., Chen, W. and Yang, J. (2018), "Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell", Compos. Struct., 189, 560-569. https://doi.org/10.1016/j.compstruct.2018.01.106.
- Malekzadeh, P., Setoodeh, A.R. and Shojaee, M. (2018), "Vibration of FG-GPLs eccentric annular plates embedded in piezoelectric layers using a transformed differential quadrature method", Comput. Method. Appl. M., 340, 451-479. https://doi.org/10.1016/j.cma.2018.06.006.
- Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano., 3(12), 3884-3890. https://doi.org/10.1021/nn9010472.
- Reddy, C.D., Rajendran, S. and Liew, K.M. (2006), "Equilibrium configuration and continuum elastic properties of finite sized graphene", Nanotechnology, 17(3), p.864. https://doi.org/10.1088/0957-4484/17/3/042.
- Reddy, J.N. (2006), Theory and analysis of elastic plates and shells, CRC press.
- Saidi, A.R., Bahaadini, R. and Majidi-Mozafari, K. (2019), "On vibration and stability analysis of porous plates reinforced by graphene platelets under aerodynamical loading", Compos. Part. B-Eng., 164, 778-799. https://doi.org/10.1016/j.compositesb.2019.01.074.
- Scarpa, F., Adhikari, S. and Phani, A.S. (2009), "Effective elastic mechanical properties of single layer graphene sheets", Nanotechnology, 20(6), p.065709. https://doi.org/10.1088/0957-4484/20/6/065709
- Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004), "Electric field effect in atomically thin carbon films", Science, 306(5696), 666-669. https://doi.org/1126/science.1102896. https://doi.org/10.1126/science.1102896
- Potts, J.R., Dreyer, D.R., Bielawski, C.W. and Ruoff, R.S. (2011), "Graphene-based polymer nanocomposites", Polymer, 52(1), 5-25. https://doi.org/10.1016/j.polymer.2010.11.042.
- Qu, Y., Long, X., Yuan, G. and Meng, G. (2013), "A unified formulation for vibration analysis of functionally graded shells of revolution with arbitrary boundary conditions", Compos. Part. B-Eng., 50, 381-402. https://doi.org/10.1016/j.compositesb.2013.02.028.
- Shen, H.S., Lin, F. and Xiang, Y. (2017), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments", Nonlinear. Dynam., 90(2), 899-914. https://doi.org/10.1007/s11071-017-3701-0.
- Shen, H.S., Xiang, Y. and Fan, Y., (2019), "Nonlinear vibration of thermally postbuckled FG-GRC laminated beams resting on elastic foundations", Int. J. Struct. Stab. Dy., 25(9), 1507-1520. https://doi.org/10.1142/S0219455419500512.
- Shen, H.S., Xiang, Y. and Fan, Y. (2019), "Vibration of thermally postbuckled FG-GRC laminated plates resting on elastic foundations", J. Vib. Control., 19(6), p.1950051. https://doi.org/10.1177/1077546319825671.
- Shen, H.S., Xiang, Y. and Lin, F. (2017), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments", Comput. Method. Appl. M., 319, 175-193. https://doi.org/10.1016/j.cma.2017.02.029.
- Shen, H.S., Xiang, Y. and Fan, Y. (2017), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical shells in thermal environments", Compos. Struct., 182, 447-456. https://doi.org/10.1016/j.compstruct.2017.09.010.
- Shen, H.S., Xiang, Y., Fan, Y. and Hui, D. (2018), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical panels resting on elastic foundations in thermal environments", Compos. Part. B-Eng., 136, 177-186. https://doi.org/10.1016/j.compositesb.2017.10.032.
- Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070.
- Stankovich, S., Dikin, D.A., Dommett, G.H., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T. and Ruoff, R.S. (2006), "Graphene-based composite materials", Nature, 442(7100), p.282. https://doi.org/10.1038/nature04969
- Thai, C.H., Ferreira, A.J.M., Tran, T.D. and Phung-Van, P. (2019), "Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation", Compos. Struct., 220, 749-759. https://doi.org/10.1016/j.compstruct.2019.03.100.
- Tornabene, F. and Viola, E. (2007), "Vibration analysis of spherical structural elements using the GDQ method", Comput. Math. Appl., 53(10), 1538-1560. https://doi.org/10.1016/j.camwa.2006.03.039.
- Wang, M., Xu, Y.G., Qiao, P. and Li, Z.M. (2019), "A two-dimensional elasticity model for bending and free vibration analysis of laminated graphene-reinforced composite beams", Compos. Struct., 211, 364-375. https://doi.org/10.1016/j.compstruct.2018.12.033.
- Wang, Y., Xie, K., Fu, T. and Shi, C. (2019), "Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses", Compos. Struct., 209, 928-939. https://doi.org/10.1016/j.compstruct.2018.11.014.
- Wang, A., Chen, H., Hao, Y. and Zhang, W. (2018), "Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets", Results. Phys., 9, 550-559. https://doi.org/10.1016/j.rinp.2018.02.062.
- Wu, H., Kitipornchai, S. and Yang, J. (2017), "Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates", Mater. Design., 132, 430-441. https://doi.org/10.1016/j.matdes.2017.07.025.
- Zhang, Y.Y., Wang, C.M., Cheng, Y. and Xiang, Y. (2011), "Mechanical properties of bilayer graphene sheets coupled by sp3 bonding", Carbon, 49(13), 4511-4517. https://doi.org/10.1016/j.carbon.2011.06.058.
- Zhao, X., Zhang, Q., Chen, D. and Lu, P. (2010), "Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites", Macromolecules, 43(5), 2357-2363. https://doi.org/10.1021/ma902862u.
- Zhao, Z., Feng, C., Wang, Y. and Yang, J. (2017), "Bending and vibration analysis of functionally graded trapezoidal nanocomposite plates reinforced with graphene nanoplatelets (GPLs)", Compos. Struct., 180, 799-808. https://doi.org/10.1016/j.compstruct.2017.08.044.
Cited by
- Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.051
- Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory vol.39, pp.1, 2020, https://doi.org/10.12989/scs.2021.39.1.095
- On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2020, https://doi.org/10.12989/scs.2021.39.2.149
- Calcium carbonate nanoparticles effects on cement plast properties vol.27, pp.8, 2021, https://doi.org/10.1007/s00542-020-05136-6
- Computer modeling for frequency performance of viscoelastic magneto-electro-elastic annular micro/nanosystem via adaptive tuned deep learning neural network optimization vol.11, pp.2, 2020, https://doi.org/10.12989/anr.2021.11.2.203