DOI QR코드

DOI QR Code

Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes

  • Daikh, Ahmed Amine (Department of Civil Engineering, Laboratoire d'Etude des Structures et de Meecanique des Mateeriaux) ;
  • Drai, Ahmed (Department of Mechanical Engineering, Mustapha STAMBOULI, University of Mascara) ;
  • Houari, Mohamed Sid Ahmed (Department of Civil Engineering, Laboratoire d'Etude des Structures et de Meecanique des Mateeriaux) ;
  • Eltaher, Mohamed A. (Faculty of Engineering, Department of Mechanical Engineering, King Abdulaziz University)
  • 투고 : 2020.07.05
  • 심사 : 2020.08.28
  • 발행 : 2020.09.25

초록

This article presents a comprehensive static analysis of simply supported cross-ply carbon nanotubes reinforced composite (CNTRC) laminated nanobeams under various loading profiles. The nonlocal strain gradient constitutive relation is exploited to present the size-dependence of nano-scale. New higher shear deformation beam theory with hyperbolic function is proposed to satisfy the zero-shear effect at boundaries and parabolic variation through the thickness. Carbon nanotubes (CNTs), as the reinforced elements, are distributed through the beam thickness with different distribution functions, which are, uniform distribution (UD-CNTRC), V- distribution (FG-V CNTRC), O- distribution (FG-O CNTRC) and X- distribution (FG-X CNTRC). The equilibrium equations are derived, and Fourier series function are used to solve the obtained differential equation and get the response of nanobeam under uniform, linear or sinusoidal mechanical loadings. Numerical results are obtained to present influences of CNTs reinforcement patterns, composite laminate structure, nonlocal parameter, length scale parameter, geometric parameters on center deflection ad stresses of CNTRC laminated nanobeams. The proposed model is effective in analysis and design of composite structure ranging from macro-scale to nano-scale.

키워드

과제정보

This research was supported by the Algerian Directorate General of Scientific Research and Technological Development (DGRSDT) and University of Mustapha Stambouli of Mascara (UMS Mascara) in Algeria.

참고문헌

  1. Ahouel, M. Houari, M.S.A. Adda Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963.
  2. Ait Atmane, H. Tounsi, A. and Bernard, F. (2017), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des., 13, 71-84. https://doi.org/10.1007/s10999-015-9318-x.
  3. Akbas, S.D. (2017), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupled Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399.
  4. Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Stability of perforated nanobeams incorporating surface energy effects", Steel Compos. Struct., 35(4), 555-566. https://doi.org/10.12989/scs.2020.35.4.555.
  5. Anirudh, B., Ben Zineb, T., Polit, O., Ganapathi, M. and Prateek, G. (2020), "Nonlinear bending of porous curved beams reinforced by functionally graded nanocomposite graphene platelets applying an efficient shear flexible finite element approach", Int. J. Nonlinear Mech., 119, 103346. https://doi.org/10.1016/j.ijnonlinmec.2019.103346.
  6. Avhad, P.V. and Sayyad, A.S. (2020), "Static analysis of functionally graded composite beams curved in elevation using higher order shear and normal deformation theory", Mater. Today: Proceedings, 21, 1195-1199. https://doi.org/10.1016/j.matpr.2020.01.069.
  7. Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Design, 28, 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007.
  8. Barati, M.R. (2017), "Dynamic response of porous functionally graded material nanobeams subjected to moving nanoparticle based on nonlocal strain gradient theory", Mat. Res. Express, 4(11), 115017. https://doi.org/10.1088/2053-1591/aa9765.
  9. Barati, M.R. Faleh, N.M. and. Zenkour, A.M. (2018), "Dynamic response of nanobeams subjected to moving nanoparticles and hygro-thermal environments based on nonlocal strain gradient theory", Mech. Adv. Mater. Struct., 26(19), 1661-1669. https://doi.org/10.1080/15376494.2018.1444234.
  10. Benatta, M.A., Mechab, I., Tounsi, A. and Adda Bedia, E.A. (2008), "Static analysis of functionally graded short beams including warping and shear deformation effects", Comput. Mater. Sci., 44, 765-773. https://doi.org/10.1016/j.commatsci.2008.05.020.
  11. Bensaid, I., Daikh, A.A. and Drai, A. (2020), "Size-dependent free vibration and buckling analysis of sigmoid and power law functionally graded sandwich nanobeams with microstructural defects", Proceedings of the institution of mechanical engineers, Part C: Journal of mechanical engineering science. https://doi.org/10.1177/0954406220916481.
  12. Borjalilou, V., Taati, E. and Ahmadian, M.T. (2019), "Bending, buckling and free vibration of nonlocal FG-carbon nanotube-reinforced composite nanobeams: exact solutions", SN Applied Sciences, 1, 1323. https://doi.org/10.1007/s42452-019-1359-6.
  13. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115.
  14. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409.
  15. Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Bedia, E.A.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams. Steel Compos. Struct., 15(5), 467-479. https://doi.org/10.12989/scs.2013.15.5.467.
  16. Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.
  17. Chen, D., Yang, J. and Kitipornchai, S, (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. http://dx.doi.org/10.1016/j.compstruct.2015.07.052.
  18. Daikh, A.A., Bachiri, A., Houari, M.S.A. and Tounsi, A. (2020), "Size dependent free vibration and buckling of multilayered carbon nanotubes reinforced composite nanoplates in thermal environment", Mech. Based Design Struct. Mach., https://doi.org/10.1080/15397734.2020.1752232.
  19. Daikh, A.A., Bensaid, I., Bachiri, A., Houari, M.S.A., Tounsi, A. and Merzouki, T. (2020), "On static bending of multilayered carbon nanotube-reinforced composite plates", Comput. Concrete, 26(2), 137-150. https://doi.org/10.12989/cac.2020.26.2.000
  20. Daikh, A.A., Guerroudj, M., Elajrami, M. and Megueni, A. (2020), "Thermal Buckling of Functionally Graded Sandwich Beams, Adv. Mater. Res., 1156, 43-59. https://doi.org/10.4028/www.scientific.net/AMR.1156.43.
  21. Daikh, A.A., Houari, M.S.A. and Tounsi, A. (2019), "Buckling analysis of porous FGM sandwich nanoplates due to heat conduction via nonlocal strain gradient theory", Eng. Res. Express, 1, 015022. https://doi.org/10.1088/2631-8695/ab38f9.
  22. Ding, J.H., Huang, D.J. and Chen, W.Q. (2007), "Elasticity solutions for plane anisotropic functionally graded beams", Int. J. Solids Struct., 44(1), 176-196. https://doi.org/10.1016/j.ijsolstr.2006.04.026.
  23. Ebrahimi, F. and Barati, M.R. (2016a), "Through-the-length temperature distribution effects on thermal vibration analysis of nonlocal strain-gradient axially graded nanobeams subjected to nonuniform magnetic field", J. Therm. Stresses, 40(5), 548-563. https://doi.org/10.1080/01495739.2016.1254076.
  24. Ebrahimi, F. and Barati, M.R. (2016b), "Size-dependent dynamic modeling of inhomogeneous curved nanobeams embedded in elastic medium based on nonlocal strain gradient theory", Proceedings of the institution of mechanical engineers, Part C: Journal of mechanical engineering science, 231(23), 4457-4469. https://doi.org/10.1177/0954406216668912.
  25. Ebrahimi, F. and Barati, M.R. (2016c), "Nonlocal strain gradient theory for damping vibration analysis of viscoelastic inhomogeneous nano-scale beams embedded in visco-Pasternak foundation", J. Vib. Control, 24(10), 2080-2095. https://doi.org/10.1177/1077546316678511.
  26. Ebrahimi, F. and Barati, M.R. (2017a), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159, 174-182. https://doi.org/10.1016/j.compstruct.2016.09.058.
  27. Ebrahimi, F. and Barati, M.R. (2017b), "Flexural wave propagation analysis of embedded S-FGM nanobeams under longitudinal magnetic field based on nonlocal strain gradient theory", Arabian J. Sci. Eng., 42(5), 1715-1726. https://doi.org/10.1007/s13369-016-2266-4.
  28. Ebrahimi, F. and Barati, M.R. (2017c), "Longitudinal varying elastic foundation effects on vibration behavior of axially graded nanobeams via nonlocal strain gradient elasticity theory", Mech. Adv. Mater. Struct., 25(11), 953-963. https://doi.org/10.1080/15376494.2017.1329467.
  29. Ebrahimi, F. and Barati, M.R. (2018), "Damping vibration behavior of visco-elastically coupled double-layered graphene sheets based on nonlocal strain gradient theory", Smart Mater. Struct., 26(6), 065018. https://doi.org/10.1007/s00542-017-3529-z.
  30. Eltaher, M.A. Emam, S.A. Mahmoud, F.F. (2013), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030.
  31. Eltaher, A.M., Fouda, N., El-midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Braz. Soc. Mech. Sci. Eng., 40, 141. https://doi.org/10.1007/s40430-018-1065-0.
  32. Eltaher, M.A. and Abdelrahman, A.A. (2020), "Bending behavior of squared cutout nanobeams incorporating surface stress effects", Steel Compos. Struct., 36(2), 143-161. http://dx.doi.org/10.12989/scs.2020.36.2.143.
  33. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.
  34. Fahsi, B.. Bachir Bouiadjra, B., Mahmoudi, A., Benyoucef, S. and Tounsi, A. (2013), "Assessing the effects of porosity on the bending, buckling, and vibrations of functionally graded beams resting on an elastic foundation by using a new refined quasi-3d theory", Mech. Compos. Mater., 55(2), 219-230. https://doi.org/10.1007/s11029-019-09805-0.
  35. Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs)", Eng. Struct., 140, 110-119. http://dx.doi.org/10.1016/j.engstruct.2017.02.052.
  36. Fouda, N., El-midany, T. and Sadoun, A.M. (2017), "Bending, Buckling and Vibration of a Functionally Graded Porous Beam Using Finite Elements", J. Appl. Comput. Mech., 3(4), 274-282. https://doi.org/10.22055/JACM.2017.21924.1121
  37. Ghorbanpour Arani, A. and Zamani, M.H. (2018), "Bending analysis of agglomerated carbon nanotube-reinforced beam resting on two parameters modified Vlasov model foundation", Indian J. Phys., 92, 767-777. https://doi.org/10.1007/s12648-018-1162-z.
  38. Hadji, L., Daouadji, T.H., Meziane, M., Ait Amar. Tlidji, Y. and Adda Bedia, E.A. (2016), "Analysis of functionally graded beam using a new first-order shear deformation theory", Struct. Eng. Mech., 57(2), 315-325. https://doi.org/10.12989/sem.2016.57.2.315.
  39. Hadji, L., Hassaine Daouadji, T., Tounsi, A. and Bedia, E.A. (2015a), "An-order refined theory for bending and free vibration of functionally graded beams", Struct. Eng. Mech., 54(5), 923-936. https://doi.org/10.12989/sem.2015.54.5.923
  40. Hadji, L., Khelifa, Z. and Adda Bedia, E.A. (2016), "A New Higher Order Shear Deformation Model for Functionally Graded Beams", KSCE J. Civ. Eng., 20, 1835-1841. https://doi.org/10.1007/s12205-015-0252-0.
  41. Hadji, L., Khelifa, Z., Daouadji, T.H. and Bedia, E.A. (2015b), "Static bending and free vibration of FGM beam using an exponential shear deformation theory", Coupled Syst. Mech., 4(1), 99-114. https://doi.org/10.12989/CSM.2015.4.1.099.
  42. Hadji, L., Zouatnia, N. and Bernard, F. (2018), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231.
  43. Hamed, M.A., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. with Comput., 1-18. https://doi.org/10.1007/s00366-020-01023-w.
  44. Hassaine Daouadji, T., Henni, A.H., Tounsi, A. and Bedia, E.A.A. (2013), "Elasticity solution of a cantilever functionally graded beam", Appl. Compos. Mater., 20(1), 1-15. https://doi.org/10.1007/s10443-011-9243-6.
  45. Heshmati, M. and Daneshmand, F. (2018), "Vibration analysis of non-uniform porous beams with functionally graded porosity distribution", J Mater.: Design Appl., 233(8), 1678-1697. https://doi.org/10.1177/1464420718780902.
  46. Kadoli, R., Akhtar, K. and Ganesan, N. (2008), "Static analysis of functionally graded beams using higher order shear deformation theory", Appl. Math. Model., 32, 2509-2525. https://doi.org/10.1016/j.apm.2007.09.015.
  47. Lim, C.W., Zhang, G. and Redd, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  48. Lu, C.F., Chen, W.Q., Xu, R.Q. and Lim, C.W. (2008), "Semi-analytical elasticity solutions for bi-directional functionally graded beams", Int. J. Solids Struct., 45, 258-275. https://doi.org/10.1016/j.ijsolstr.2007.07.018.
  49. Malikan, M. and Eremeyev, V.A. (2020), "A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition", Compos. Struct., 249, 112486. https://doi.org/10.1016/j.compstruct.2020.112486.
  50. Mayandi, K. and Jeyaraj, P (2003), "Bending, buckling and free vibration characteristics of FG-CNT-reinforced polymer composite beam under non-uniform thermal load", J Mater. Design Appl., 229, 13-28. http://dx.doi.org/10.1177/1464420713493720.
  51. Meradjah, M., Kaci, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2015), "A new higher order shear and normal deformation theory for functionally graded beams", Steel Compos. Struct., 18(3), 793-809. https://doi.org/10.12989/scs.2015.18.3.793
  52. Mirjavadi, S.S., Afshari, B.M., Barati, M.R. and Hamouda, A.M.S. (2020), "Transient response of porous inhomogeneous nanobeams due to various impulsive loads based on nonlocal strain gradient elasticity", Int. J. Mech. Mater. Design, 16(1), 57-68. https://doi.org/10.1007/s10999-019-09452-2.
  53. Ould Larbi, L., Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Based Design Struct. Mach., 41(4), 421-433, https://doi.org/10.1080/15397734.2013.763713.
  54. Pradhan, S.C. and Mandal, U. (2013), "Finite element analysis of CNTs based on nonlocal elasticity and Timoshenko beam theory including thermal effect", Physica E, 53, 223-232. http://dx.doi.org/10.1016/j.physe.2013.04.029.
  55. Sahmani, S., Mohammadi Aghdam, M. and Rabczuk, T. (2018), "Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory", Compos. Struct., 186, 68-78. https://doi.org/10.1016/j.compstruct.2017.11.082.
  56. Salari, E., Sadough Vanini, S.A., Ashoori, R.A. and Akbarzadeh, H.A. (2020), "Nonlinear thermal behavior of shear deformable FG porous nanobeams with geometrical imperfection: Snap-through and postbuckling analysis", Int. J. Mech. Sci., 178, 105615. https://doi.org/10.1016/j.ijmecsci.2020.105615.
  57. Sallai, B., Hadji, L., Daouadji, T.H. and Adda Bedia, E.A. (2015), "Analytical solution for bending analysis of functionally graded beam", Steel Compos. Struct., 19(4), 829-841. https://doi.org/10.12989/SCS.2015.19.4.829.
  58. Salvetat, D. and Rubio, A. (2002), "Mechanical properties of carbon nanotubes: a fiber digest for beginners", Carbon, 40,1729-1734. https://doi.org/10.1016/S0008-6223(02)00012-X.
  59. Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0.
  60. Sayyad, S.A. and Ghugal, Y.M. (2018), "An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation", Adv. Aircraft Spacecraft Sci., 5(6), 671-689. https://doi.org/10.12989/aas.2018.5.6.671.
  61. Shen, H.C., Lin, F. and Xiang, Y. (2017), "Nonlinear bending and thermal postbuckling of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations", Eng. Struct., 140, 89-97. http://dx.doi.org/10.1016/j.engstruct.2017.02.069.
  62. Sobhy, M. (2020), "Differential quadrature method for magneto-hygrothermal bending of functionally graded graphene/Al sandwich-curved beams with honeycomb core via a new higher-order theory", J. Sandw. Struct. Mater., https://doi.org/10.1177/1099636219900668.
  63. Tran, T.T., Pham, Q.H. and Nguyen-Thoi, T. (2020), "Static and free vibration analyses of functionally graded porous variable-thickness plates using an edge-based smoothed finite element method", Defence Technol., https://doi.org/10.1016/j.dt.2020.06.001.
  64. Wang, Y., Xie, K., Fu, T. and Shi, C. (2019), "Bending and elastic vibration of a novel functionally graded polymer nanocomposite beam reinforced by graphene nanoplatelets", Nanomaterials, 9, 1690. https://doi.org/10.3390/nano9121690.
  65. Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. http://dx.doi.org/10.1016/j.commatsci.2013.01.028.
  66. Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Vessels Pip., 98, 119-128. http://dx.doi.org/10.1016/j.ijpvp.2012.07.012.
  67. Ying, J., Lu, C.F. and Chen, W.Q. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84(3), 209-219. https://doi.org/10.1016/j.compstruct.2007.07.004.
  68. Zghal, S., Ataoui, D. and Dammak, F. (2020), "Static bending analysis of beams made of functionally graded porous materials", Mech. Based Design Struct. Mach., https://doi.org/10.1080/15397734.2020.1748053.
  69. Zhao, X., Zheng, S. and Li, Z. (2020), "Effects of porosity and flexoelectricity on static bending and free vibration of AFG piezoelectric nanobeams", Thin-Wall. Struct., 151, 106754. https://doi.org/10.1016/j.tws.2020.106754.
  70. Zhong, Z. and Yu, T. (2007), "Analytical solution of a cantilever functionally graded beam", Compos. Sci. Technol., 67(3-4), 481-488. https://doi.org/10.1016/S0266-3538(01)00007-0.
  71. Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2017), "A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams", Struct. Eng. Mech., 64(2), 145-153. https://doi.org/10.12989/sem.2017.64.2.145.
  72. Zouatnia, N. Hadji, L. and Kassoul, A. (2017), "A refined hyperbolic shear deformation theory for bending of functionally graded beams based on neutral surface position", Struct. Eng. Mech., 63(5), 683-689. https://doi.org/10.12989/sem.2017.63.5.683.
  73. Zouatnia, N., Hadji, L. and Kassoul, A. (2019), "An analytical solution for bending and vibration responses of functionally graded beams with porosities", Wind Struct., 25(4), 329-342. https://doi.org/10.12989/was.2017.25.4.329.

피인용 문헌

  1. The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory vol.10, pp.1, 2020, https://doi.org/10.12989/anr.2021.10.1.015
  2. Static analysis of cutout microstructures incorporating the microstructure and surface effects vol.38, pp.5, 2020, https://doi.org/10.12989/scs.2021.38.5.583