과제정보
Computational resources were provided by HPC@POLITO, a project of Academic Computing within the Department of Control and Computer Engineering at the Politecnico di Torino (http://www.hpc.polito.it).
참고문헌
- Ampellio, E., Bertini, F., Ferrero, A., Larocca, F. and Vassio, L. (2016), "Turbomachinery design by a swarm-based optimization method coupled with a CFD solver", Adv. Aircraft Spacecraft Sci., 3(2), 149, https://doi.org/10.12989/aas.2016.3.2.149.
- Bassi, F., Botti, L., Colombo, A., Di Pietro, D.A. and Tesini, P. (2012), "On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations", J. Comput. Phys., 231(1), 45-65, https://doi.org/10.1016/j.jcp.2011.08.018.
- Bassi, F., Cecchi, F., Franchina, N., Rebay, S. and Savini, M. (2011), "High-order discontinuous Galerkin computation of axisymmetric transonic flows in safety relief valves", Comput. Fluids, 49(1), 203-213, https://doi.org/10.1016/j.compfluid.2011.05.015.
- Burbeau, A. and Sagaut, P. (2005), "A dynamic p-adaptive discontinuous Galerkin method for viscous flow with shocks", Comput. Fluids, 34(4-5), 401-417, https://doi.org/10.1016/j.compfluid.2003.04.002.
- Chalmers, N., Agbaglah, G., Chrust, M. and Mavriplis, C. (2019), "A parallel hp-adaptive high order discontinuous Galerkin method for the incompressible Navier-Stokes equations", J. Comput. Phys. X, 2, 100023, https://doi.org/10.1016/j.jcpx.2019.100023.
- Eskilsson, C. (2011), "An hp-adaptive discontinuous Galerkin method for shallow water flows", Int. J. Numer. Methods Fluids, 67(11), 1605-1623, https://doi.org/10.1002/d.2434.
- Ferrero, A. and D'Ambrosio, D. (2020), "An Hybrid Numerical Flux for Supersonic Flows with Application to Rocket Nozzles", in "17-th International Conference of Numerical Analysis and Applied Mathematics", AIP Conference Proceedings.
- Ferrero, A. and Larocca, F. (2016), "Feedback filtering in discontinuous Galerkin methods for Euler equations", Prog. Comput. Fluid Dyn., 16(1), 14-25, https://doi.org/10.1504/PCFD.2016.074221.
- Ferrero, A. and Larocca, F. (2017), "Adaptive CFD schemes for aerospace propulsion", in "J. Phys. Conf. Ser.", volume 841, page 012017, IOP Publishing, https://doi.org/10.1088/1742-6596/841/1/012017.
- Ferrero, A., Larocca, F. and Bernaschek, V. (2017), "Unstructured discretisation of a nonlocal transition model for turbomachinery flows", Adv. Aircraft Spacecraft Sci., 4(5), 555-571, https://doi.org/10.12989/aas.2017.4.5.555.
- Ferrero, A., Larocca, F. and Puppo, G. (2015), "A robust and adaptive recovery-based discontinuous Galerkin method for the numerical solution of convection{diffusion equations", Int. J. Numer. Methods Fluids, 77(2), 63-91, https://doi.org/10.1002/fld.3972.
- Geuzaine, C. and Remacle, J.F. (2009), "Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities", Int. J. Numer. Methods Eng., 79(11), 1309-1331, https://doi.org/10.1002/nme.2579.
- Giorgiani, G., Fernandez-Mendez, S. and Huerta, A. (2013), "Hybridizable discontinuous Galerkin p-adaptivity for wave propagation problems", Int. J. Numer. Methods Fluids, 72(12), 1244-1262, https://doi.org/10.1002/d.3784.
- Godunov, S.K. (1959), "A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations", Math. Sbornik, 47, 271-306.
- Guo, S. and Tao, W.Q. (2018), "A hybrid flux splitting method for compressible flow", Numer. Heat Tr. B-Fund., 73(1), 33-47, https://doi.org/10.1080/10407790.2017.1420315.
- Hartmann, R. and Houston, P. (2002), "Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations", J. Comput. Phys., 183(2), 508-532, https://doi.org/10.1006/jcph.2002.7206.
- Hu, L.J. and Yuan, L. (2014), "A Robust Hybrid HLLC-FORCE Scheme for Curing Numerical Shock Instability", in "Applied Mechanics and Materials", volume 577, pages 749-753, Trans Tech Publ, https://doi.org/10.4028/www.scientific.net/AMM.577.749.
- Jaisankar, S. and Sheshadri, T. (2013), "Directional Diffusion Regulator (DDR) for some numerical solvers of hyperbolic conservation laws", J. Comput. Phys., 233, 83-99, https://doi.org/10.1016/j.jcp.2012.07.031.
- Kroll, N., Bieler, H., Deconinck, H., Couaillier, V., van der Ven, H. and Sorensen, K. (2010), ADIGMA-A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications: Results of a Collaborative Research Project Funded by the European Union, 2006-2009, volume 113, Springer Science & Business Media, https://doi.org/10.1007/978-3-642-03707-8.
- Kroll, N., Hirsch, C., Bassi, F., Johnston, C. and Hillewaert, K. (2015), IDIHOM: Industrialization of High-Order Methods-A Top-Down Approach: Results of a Collaborative Research Project Funded by the European Union, 2010-2014, volume 128, Springer, https://doi.org/10.1007/978-3-319-12886-3.
- Liou, M.S. (1996), "A sequel to ausm: Ausm+", J. Comput. Phys., 129(2), 364-382, https://doi.org/10.1006/jcph.1996.0256.
- Liu, X.D., Osher, S. and Chan, T. (1994), "Weighted essentially non-oscillatory schemes", J. Comput. Phys., 115(1), 200-212, https://doi.org/10.1006/jcph.1994.1187.
- Nishikawa, H. and Kitamura, K. (2008), "Very simple, carbuncle-free, boundary-layerresolving, rotated-hybrid Riemann solvers", J. Comput. Phys., 227(4), 2560-2581, https://doi.org/10.1016/j.jcp.2007.11.003.
- Osher, S. and Solomon, F. (1982), "Upwind difference schemes for hyperbolic systems of conservation laws", Math. Comput., 38(158), 339-374, https://doi.org/10.1090/S0025-5718-1982-0645656-0.
- Pandolfi, M. (1984), "A contribution to the numerical prediction of unsteady flows", AIAA J., 22(5), 602-610, https://doi.org/10.2514/3.48491.
- Pandolfi, M. and D'Ambrosio, D. (2001), "Numerical instabilities in upwind methods: analysis and cures for the carbuncle phenomenon", J. Comput. Phys., 166(2), 271-301, https://doi.org/10.1006/jcph.2000.6652.
- Pandolfi, M. and D'Ambrosio, D. (2002), "Performances of upwind methods in predicting shear-like flows", Comput. Fluids, 31(4-7), 725-744, https://doi.org/10.1016/S0045-7930(01)00071-8.
- Remacle, J.F., Flaherty, J.E. and Shephard, M.S. (2003), "An adaptive discontinuous Galerkin technique with an orthogonal basis applied to compressible ow problems", SIAM Rev., 45(1), 53-72, https://doi.org/10.1137/S00361445023830.
- Roe, P.L. (1981), "Approximate Riemann solvers, parameter vectors, and difference schemes", J. Comput. Phys., 43(2), 357-372, https://doi.org/10.1016/0021-9991(81)90128-5.
- Rusanov, V.V. (1962), "The calculation of the interaction of non-stationary shock waves and obstacles", USSR Comput. Math. Math. Phys., 1(2), 304-320, https://doi.org/10.1016/0041-5553(62)90062-9.
- Van Leer, B. (1997), "Flux-vector splitting for the Euler equation", in "Upwind and High-Resolution Schemes", pages 80-89, Springer, https://doi.org/10.1007/978-3-642-60543-7 5.
- Wang, D., Deng, X., Wang, G. and Dong, Y. (2016), "Developing a hybrid flux function suitable for hypersonic ow simulation with high-order methods", Int. J. Numer. Methods Fluids, 81(5), 309-327, https://doi.org/10.1002/fld.4186.
- Wang, Z.J., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R., Hillewaert, K., Huynh, H.T. et al. (2013), "High-order CFD methods: current status and perspective", Int. J. Numer. Methods Fluids, 72(8), 811-845, https://doi.org/10.1002/fld.3767.
- Zenoni, G., Leicht, T., Colombo, A. and Botti, L. (2017), "An agglomeration-based adaptive discontinuous Galerkin method for compressible flows", Int. J. Numer. Methods Fluids, 85(8), 465-483, https://doi.org/10.1002/fld.4390.