DOI QR코드

DOI QR Code

Flexural performance of wooden beams strengthened by composite plate

  • Tahar, Hassaine Daouadji (Department of civil engineering, Laboratory of Geomatics and sustainable development, University of Tiaret) ;
  • Abderezak, Rabahi (Department of civil engineering, Laboratory of Geomatics and sustainable development, University of Tiaret) ;
  • Rabia, Benferhat (Department of civil engineering, Laboratory of Geomatics and sustainable development, University of Tiaret)
  • 투고 : 2020.04.23
  • 심사 : 2020.09.08
  • 발행 : 2020.09.25

초록

Using bonded fiber-reinforced polymer laminates for strengthening wooden structural members has been shown to be an effective and economical method. In this research, properties of suitable composite materials (sika wrap), adhesives and two ways of strengthening beams exposed to bending moment are presented. Passive or slack reinforcement is one way of strengthening. The most effective way of such a strengthening was to place reinforcement laminates in the stretched part of the wooden beam (lower part in our case), in order to investigate the effectiveness of externally bonding FRP to their soffits. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the wooden beam, the sika wrap composite plate and the adhesive layer. The theoretical predictions are compared with other existing solutions. This research is helpful for the understanding on mechanical behaviour of the interface and design of the composite-wooden hybrid structures. The results showed that the use of the new strengthening system enhances the performance of the wooden beam when compared with the traditional strengthening system.

키워드

참고문헌

  1. Abdederak, R., Daouadji, T.H., Benferhat R. and Adim B. (2018), "Nonlinear analysis of damaged RC beams strengthened with glass fiber reinforced polymer plate under symmetric loads", Earthq. Struct., 15(2), 113-122. https://doi.org/10.12989/eas.2018.15.2.113.
  2. Abdelhady, H., et al. (2006), "Performance of reinforced concrete beams strengthened by hybrid FRP laminates", Cement Concrete Compos., 28(2006) 906-913. https://doi:10.1016/j.cemconcomp.2006.07.016.
  3. Abdelhak, Z., Lazreg Hadji, Z., Khelifa, T., Daouadji, T.H., E.A. and Adda Bedia, E.A. (2016), "Analysis of buckling response of functionally graded sandwich plates using a refined shear deformation theory", Wind Struct., 22(3), 291-305. https://doi.org/10.12989/was.2016.22.3.291.
  4. Abualnour, M., et al. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
  5. Adim, B., Daouadji, T.H., Rabahi, A., Benhenni, M., Zidour, M. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761.
  6. AlFurjan, M.S.H., et al. (2020), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. with Comput., https://doi.org/10.1007/s00366-020-01088-7.
  7. Alimirzaei. S., et al. (2019), ""Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  8. Amara, K., Antar, K. and Benyoucef, S. (2019), "Hygrothermal effects on the behavior of reinforced-concrete beams strengthened by bonded composite laminate plates", Struct. Eng. Mech., 69(3), 327-334. https://doi.org/10.12989/sem.2019.69.3.327.
  9. Belbachir, N., et al. (2020), "Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory", Smart Struct. Syst., 25(4), 409-422. https://doi.org/10.12989/sss.2020.25.4.409.
  10. Benachour, A., Benyoucef, S., Tounsi, A. and Adda bedia, E.A. (2008), "Interfacial stress analysis of steel beams reinforced with bonded prestressed FRP plate", Eng. Struct., 30, 3305-3315. https://doi.org/10.1016/j.engstruct.2008.05.007.
  11. Benhenni, M.A., Daouadji, T.H., Abbes, B., Abbes, F., Li, Y. and Adim, B. (2019), "Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions", Struct. Eng. Mech., 70(5), 535-549. https://doi.org/10.12989/sem.2019.70.5.535.
  12. Benhenni, M.A., Daouadji, T.H., Abbes, B., Adim, B., Li, Y. and Abbes, F. (2018), "Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates", Adv. Mater. Res., 7(2), 83-103. https://doi.org/10.12989/amr.2018.7.2.119.
  13. Bensattalah, T., Zidour, M. and Daouadji, T.H. (2018), "Analytical analysis for the forced vibration of CNT surrounding elastic medium including thermal effect using nonlocal Euler-Bernoulli theory", Adv. Mater. Res., 7(3), 163-174. https://doi.org/10.12989/amr.2018.7.3.163.
  14. Bourada, F., et al. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concrete, 25(6), 485-495. https://doi.org/10.12989/cac.2020.25.6.485.
  15. Bousahla, A.A., et al. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
  16. Boutaleb, S., et al. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191.
  17. Chaabane, L.A., et al. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  18. Chaded, A., Daouadji, T.H., Rabahi, A., Adim, B., Benferhat, R. and Fazilay, A. (2018), "A high-order closed-form solution for interfacial stresses in externally sandwich FGM plated RC beams", Adv. Mater. Res., 6(4), 317-328. https://doi.org/10.12989/amr.2017.6.4.317.
  19. Chergui, S., Daouadji, T.H., Mostefa, H., Bougara, A., Abbes, B. and Amziane, S. (2019), "Interfacial stresses in damaged RC beams strengthened by externally bonded prestressed GFRP laminate plate: Analytical and numerical study", Adv. Mater. Res.; 8(3), 197-217. https://doi.org/10.12989/amr.2019.8.3.197.
  20. Chikr, S.S., et al. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471.
  21. Daouadji, T.H. (2013), "Analytical Analysis of the Interfacial Stress in Damaged Reinforced Concrete Beams Strengthened by Bonded Composite Plates", Strength of Mater., 45(5), 587-597. https://doi.org/10.1007/s11223-013-9496-4.
  22. Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Design, 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
  23. Daouadji, T.H., Abdelaziz, H.H., Tounsi, A. and Adda bedia, E.A. (2013), "Elasticity Solution of a Cantilever Functionally Graded Beam", Appl. Compos. Mater., 20(1), 1-15. https://doi.org/10.1007/s10443-011-9243-6.
  24. Daouadji, T.H., Benyoucef, S., Tounsi, A., Benrahou, K.H. and Adda bedia, E.A. (2008), "Interfacial Stresses Concentrations in FRP - Damaged RC hybrid Beams", Compos. Interfaces, 15(4), 425-440. https://doi.org/10.1163/156855408784514702.
  25. Daouadji, T.H., et al. (2019), "Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study", Struct. Eng. Mech., 72(4), 409-419. https://doi.org/10.12989/sem.2019.72.4.409.
  26. Daouadji, T.H., Rabahi, A., Abbes, B. and Adim, B. (2016), "Theoretical and finite element studies of interfacial stresses in reinforced concrete beams strengthened by externally FRP laminates plate", J. Adhesion Sci. Technol., 30(12), 1253-1280. https://doi.org/10.1080/01694243.2016.1140703.
  27. Draiche, K., et al. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  28. Guenaneche, B., Tounsi, A. and Adda Bedia, E.A. (2014), "Effect of shear deformation on interfacial stress analysis in plated beams under arbitrary loading", Adhesion & Adhesives, 48, 1-13. https://doi.org/10.1016/j.ijadhadh.2013.09.016.
  29. Hadj, B., et al. (2019), "Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations", Struct. Eng. Mech., 72(1), 823-832. https://doi.org/10.12989/sem.2019.72.1.061.
  30. Hugo, C.B., Carlos, C., David, C. and Noel, F. (2017), "Flexural Strengthening of Old Timber Floors with Laminated Carbon Fiber-Reinforced Polymers", J. Compos. Constr., 04016073 https://doi: 10.1061/(ASCE)CC.1943-5614.0000731.
  31. Hussain, M., et al. (2020), "Computer-aided approach for modelling of FG cylindrical shell sandwich with ring supports", Comput. Concrete, 25(5), 411-425. https://doi.org/10.12989/cac.2020.25.5.411.
  32. Kaddari, M., et al. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and Free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  33. Karami, M., et al. (2019), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. with Comput., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
  34. Kliger, I.R., et al. (2016), "Wood-based beams strengthened with FRP laminates: improved performance with pre-stressed systems", European J. Wood Wood Products, 74, 319-330. https://doi:10.1007/s00107-015-0970-5.
  35. Liu, S., Yinzhi, Z., Qing Zheng, J.Z., Fengnian, J. and Hualin, F. (2019), "Blast responses of concrete beams reinforced with steel-GFRP composite bars", Structures, 200-212. https://doi.org/10.1016/j.istruc.2019.08.010.
  36. Matouk, H., et al. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.
  37. Panjehpour, M., Farzadnia, N., Demirboga, R. and Ali, A. (2016), "Behavior of high-strength concrete cylinders repaired with CFRP sheets", J. Civil Eng. Management, 22(1), 56-64. https://doi.org/10.3846/13923730.2014.897965.
  38. Pello, L., Leire, G., Ignacio P. and Jose-Tomas S.J. (2020), "Flexural strengthening of low-grade reinforced concrete beams with compatible composite material: Steel Reinforced Grout (SRG)", Constr. Build. Mater., 235, article 117790. https://doi.org/10.1016/j.conbuildmat.2019.117790.
  39. Rabahi, A., Benferhat, R. and Daouadji, T.H. (2019), "Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams", Adv. Mater. Res., 7(2), 83-103. https://doi.org/10.12989/amr.2018.7.2.083.
  40. Rabahi, A., Daouadji, T.H., Benferhat, R. and Adim, B. (2018), "Elastic analysis of interfacial stress concentrations in CFRP-RC hybrid beams: Effect of creep and shrinkage", Adv. Mater. Res., 6(3), 257-278. https://doi.org/10.12989/amr.2017.6.3.257.
  41. Rabhi, M., et al. (2020), "A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geomech. Eng., 22(2), 119-132. https://doi.org/10.12989/gae.2020.22.2.119.
  42. Rabia, B., et al. (2018), "Analytical analysis of the interfacial shear stress in RC beams strengthened with prestressed exponentially-varying properties plate", Adv. Mater. Res., 7(1), 29-44. https://doi.org/10.12989/amr.2018.7.1.029.
  43. Rabia, B., et al. (2019), "Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate", Earthq. Struct., 16(5), 601-609. https://doi.org/10.12989/eas.2019.16.5.601.
  44. Rahmani,M.C. (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory", Comput. Concrete, 25(3), 225-244. https://doi.org/10.12989/cac.2020.25.3.225.
  45. Refrafi, S., et al. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25(4), 311-325. https://doi.org/10.12989/cac.2020.25.4.311.
  46. Sahla, M., et al. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663.
  47. Shariati, A., et al. (2020), "Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation", Thin-Wall. Struct., 154, 106840. https://doi.org/10.1016/j.tws.2020.106840. 258
  48. Shariati, A., et al. (2020), "Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundations", Thin-Wall. Struct., 154, 106840. https://doi.org/10.1016/j.tws.2020.106840.
  49. Smith, S.T. and Teng, J.G. (2002), "Interfacial stresses in plated beams", Eng. Struct., 23(7), 857-871. http://dx.doi.org/10.1016/S0141-0296(00)00090-0.
  50. Tayeb, B. and Daouadji, T.H. (2020), "Improved analytical solution for slip and interfacial stress in composite steel-concrete beam bonded with an adhesive", Adv. Mater. Res., 9(2), 133-153. https://doi.org/10.12989/amr.2020.9.2.133.
  51. Tounsi, A. (2006) , "Improved theoretical solution for interfacial stresses in concrete beams strengthened with FRP plate", Int. J. Solids Struct., 43(14-15), 4154-4174. https://doi.org/10.1016/j.ijsolstr.2005.03.074.
  52. Tounsi, A., Daouadji, T.H., Benyoucef, S. and Adda bedia, E.A. (2008), "Interfacial stresses in FRP-plated RC beams: Effect of adherend shear deformations", Int. J. Adhesion Adhesives, 29, 313-351. https://doi.org/10.1016/j.ijadhadh.2008.06.008.
  53. Tounsi, A., et al. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
  54. Wang, Y.H., Yu, J., Liu, J.P., Zhou, B.X. and Chen, Y.F. (2020), "Experimental study on assembled monolithic steel-prestressed concrete composite beam in negative moment", J. Constr. Steel Res., 167, 105667. https://doi.org/10.1016/j.jcsr.2019.06.004.
  55. Yehia, A. and Zaher, A. (2018), "Flexural behavior of FRP strengthened concrete-wood composite beams", Ain Shams Eng. J., 9(4), 3419-3424. https://doi.org/10.1016/j.asej.2018.06.003.
  56. Yuan C., Chen, W., Pham, T.M. and Hao, H. (2019), "Effect of aggregate size on bond behaviour between basalt fibre reinforced polymer sheets and concrete", Compos. Part B: Eng., 158, 459-474. https://doi.org/10.1016/j.compositesb.2018.09.089.
  57. Zidour, M., Si Tayeb, T., Bensattalah, T., Heireche, H., Benahmed, A. and Adda Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.

피인용 문헌

  1. Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis vol.9, pp.4, 2020, https://doi.org/10.12989/amr.2020.9.4.265
  2. Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.575
  3. Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2020, https://doi.org/10.12989/sem.2021.77.2.217
  4. Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity vol.10, pp.1, 2020, https://doi.org/10.12989/csm.2021.10.1.061
  5. Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations vol.77, pp.6, 2020, https://doi.org/10.12989/sem.2021.77.6.797
  6. Modeling and analysis of the imperfect FGM-damaged RC hybrid beams vol.6, pp.2, 2020, https://doi.org/10.12989/acd.2021.6.2.117
  7. A new model for adhesive shear stress in damaged RC cantilever beam strengthened by composite plate taking into account the effect of creep and shrinkage vol.79, pp.5, 2020, https://doi.org/10.12989/sem.2021.79.5.531
  8. New solution for damaged porous RC cantilever beams strengthening by composite plate vol.10, pp.3, 2020, https://doi.org/10.12989/amr.2021.10.3.169