DOI QR코드

DOI QR Code

의미 분석법에 의한 공과대학 신입생의 물리 이미지 및 관심 여부

Physics Image Analysis by Sematic Method and Interest in Physics of Freshman Students in the Engineering College

  • 투고 : 2020.06.18
  • 심사 : 2020.08.24
  • 발행 : 2020.08.31

초록

물리 이미지 및 관심은 물리 학습에 영향을 미치는 요인 중에 하나이다. 공과대학 신입생은 고등학교 때에 다양한 학습 환경 조건에서 대학에 입학한다. 대학 물리교육을 위하여 공과대학 신입생의 특성에 따른 물리 이미지 및 관심을 조사할 필요가 있다. 이 연구는 공과대학 신입생의 성별과 고등학교 때 물리 이수 여부에 따른 물리 이미지와 관심 여부를 조사하여, 공과대학 학생의 대학 물리 학습에 대한 교육적 시사점을 논의한다. 연구 대상은 공과대학 1학년 공과 계열 286명, 정보기술 계열 242명, 건설환경 계열 136명 총 664명이다. 분석 내용은 공과대학 신입생의 성별과 고등학교 때 물리 이수 여부에 따른 물리 이미지 및 관심 여부를 분석한다. 분석결과 첫째, 물리 이미지는 공과대학 신입생의 물리 이수 여부에 따라 유의미한 차이가 나타났다. 고등학교 때 물리를 배우지 않은 학생의 물리 이미지 점수가 물리I 또는 물리I,II를 배운 학생보다 높게 나타났다. 둘째, 물리 관심 여부는 성별과 물리 이수 여부에 따라 유의미한 차이가 나타났다. 성별에서는 남학생이 여학생보다 물리 관심이 높았고 고등학교 때 물리 이수 여부에서는 고등학교 때 물리를 이수하지 않은 학생이 물리를 이수한 학생보다 물리 관심이 높았다. 끝으로 공과대학 학생의 대학 물리 학습에 대한 교육적 시사점을 논의한다.

Physics image and interest are factors that influence physics learning. Freshmen enter an engineering college under various learning conditions when they were in high school. Understanding physics image and interest according to characteristics of freshmen will help college physics education. The purpose of this study is to investigate the physics image and interest of freshmen in an engineering college according to their gender and physics course completion in high school and discuss the educational implications of college students on physics learning. The subjects of the study are 664 first grade students in engineering college. We analyzed physics image and interest of students according to gender and physics course completion in high school. Physics image is analyzed using semantic analysis. As a result of the analysis, the physics image is different according to the physics course completion. Interest in Physics depends on gender and physics course completion. Finally, we discuss the educational implications of college physics learning for engineering students.

키워드

참고문헌

  1. Adamuti-Trache, M., Bluman, G., & Tiedje, T. (2013). Student success in first-year university physics and mathematics courses: Does the high-school attended make a difference? International Journal of Science Education, 35(17), 2905-2927. https://doi.org/10.1080/09500693.2012.667168
  2. Cho, S., & Kim, W.-J. (2017). Study on regional high school student's perception of science subjects for the college scholastic ability test. New Physics: Sae Mulli, 67(9), 1109-1114. https://doi.org/10.3938/NPSM.67.1109
  3. Christian, W., Belloni, M., Esquembre, F., Mason, B. A., Barbato, L., & Riggsbee, M. (2015) The physlet approach to simulation design. The Physics Teacher, 53(7), 419-422. https://doi.org/10.1119/1.4931011
  4. Harlow, J. J. B., Harrison, D. M., & Meyertholen, A. (2014). Correlating student interest and high school preparation with learning and performance in an introductory university physics course. Physical Review Special Topics-Physics Education Research, 10, 010112. https://doi.org/10.1103/PhysRevSTPER.10.010112
  5. Hazari, Z., Cass, C., & Beattie, C. (2015). Obscuring power structures in the physics classroom: Linking teacher positioning, student engagement, and physics identity development. Journal of Research in Science Teaching, 52(6), 735-762. https://doi.org/10.1002/tea.21214
  6. Hong, M., Kim, J.-A., & Park, H.-J. (2011). The effects of taking elective science courses in high school on studying science at the university level. Journal of the Korean Association for Science Education, 31(6), 836-847. https://doi.org/10.14697/JKASE.2011.31.6.836
  7. Huang, Y., & Li, J. (2015). Comparing personal characteristic factors of imagination between expert and novice designers within different product design stages. International Journal of Technology and Design Education, 25(2), 261-292. https://doi.org/10.1007/s10798-014-9276-x
  8. Kang, K. (2018). Analysis on pre-service science teachers' physics images by using the semantic differential method. New Physics: Sae Mulli, 68(10), 1140-1146. https://doi.org/10.3938/npsm.68.1140
  9. Kryjevskaia, M., Boudreaux, A., & Heins, D. (2014). Assessing the flexibility of researchbased instructional strategies: Implementing Tutorials in Introductory Physics in the lecture environment. American Journal of Physics, 82(3), 238-250. https://doi.org/10.1119/1.4863160
  10. Kurt, H. (2013). Determining biology teacher candidates' conceptual structures about energy and attitudes towards energy. Journal of Baltic Science Education, 12(4), 399-423.
  11. Lee, L. (2012). Analysis of physics course-taking pattern in high schools and the entrance examination for the university according to the revised national curricula. New Physics: Sae Mulli, 62(10), 1043-1052. https://doi.org/10.3938/npsm.62.1043
  12. Lee, Y., & Im, S. (2013). University students' self-efficacy about physics learning. New Physics: Sae Mulli, 63(4), 423-431. https://doi.org/10.3938/npsm.63.423
  13. Lindstrom, C., & Sharma, M. (2011) Selfefficacy of first year university physics students: Do gender and prior formal instruction in physics matter? International Journal of Innovation in Science and Mathematics Education, 19(2), 1-19.
  14. Margoniner, V., Burki, J., & Kapp, M. (2019). Monkeying around in mechanics: Using student-student dialogue videos to increase physics learning. The Physics Teacher, 57(4), 232-235. https://doi.org/10.1119/1.5095377
  15. Mason, A. J., & Singh, C. (2016). Impact of guided reflection with peers on the development of effective problem solving strategies and physics learning. The Physics Teacher, 54(5), 295-299. https://doi.org/10.1119/1.4947159
  16. Mattson, R. E., Rogge, R. D., Johnson, M. D., Davidson, E. K. B., & Fincham, F. D. (2013). The positive and negative semantic dimensions of relationship satisfaction. Personal Relationships, 20(2), 328-355. https://doi.org/10.1111/j.1475-6811.2012.01412.x
  17. Murakami, T., & Kroonenberg, P. M. (2003). Three-mode models and individual differences in semantic differential data. Multivariate Behavioral Research, 38(2), 247-283. https://doi.org/10.1207/S15327906MBR3802_5
  18. Norbergh, K., Helin, Y., Dahl, A., Hellzen, O., & Asplund, K. (2006). Nurses' attitudes towards people with dementia: The semantic differential technique. Nursing Ethics, 13(3), 264-274. https://doi.org/10.1191/0969733006ne863oa
  19. Sawtelle, V., Brewe, E., & Kramer, L. H. (2012). Exploring the relationship between selfefficacy and retention in introductory physics. Journal of Research in Science Teaching, 49(9), 1096-1121. https://doi.org/10.1002/tea.21050
  20. Schlag, P. A., Yoder, D. G., & Sheng, Z. (2015). Words matter: A semantic differential study of recreation, leisure, play, activity, and sport. A Journal of Leisure Studies and Recreation Education, 1, 25-38. https://doi.org/10.1080/1937156X.2015.11949724
  21. Song, Y. (2018). The effect of peer-leader collaboration problem-solving(PLCPS) for helping physics learning of university students in introductory physics class. New Physics: Sae Mulli, 68(9), 994-1004. https://doi.org/10.3938/npsm.68.994
  22. Song, Y., & Choi, H. (2015). Strategy and application of phased context teachinglearning for helping physics learning. Journal of Science Education, 39(3), 333-342. https://doi.org/10.21796/jse.2015.39.3.333
  23. Song, Y., & Choi, H. (2017). Development and application of measurement tools for physics image using the semantic differential method. Journal of the Korean Association for Science Education, 37(6), 1051-1061. https://doi.org/10.14697/JKASE.2017.37.6.1051