DOI QR코드

DOI QR Code

Sulfoquinovosylmonoacylglycerols regulating intestinal inflammation in co-culture system from the brown alga Turbinaria ornata

  • Lee, Seon Min (Gyeongnam Department of Environment & Toxicology, Korea Institute of Toxicology) ;
  • Kim, Na-Hyun (Gyeongnam Department of Environment & Toxicology, Korea Institute of Toxicology) ;
  • Ji, Yeong Kwang (Department of Oceanography, Kunsan National University) ;
  • Kim, Yun Na (Department of Agronomy and Medicinal Plant Resources, Gyeongnam National University of Science and Technology) ;
  • Jeon, You-Jin (Department of Marine Life Sciences, Jeju National University) ;
  • Heo, Jeong Doo (Gyeongnam Department of Environment & Toxicology, Korea Institute of Toxicology) ;
  • Jeong, Eun Ju (Department of Agronomy and Medicinal Plant Resources, Gyeongnam National University of Science and Technology) ;
  • Rho, Jung-Rae (Department of Oceanography, Kunsan National University)
  • Received : 2020.01.01
  • Accepted : 2020.05.23
  • Published : 2020.06.15

Abstract

The inflammatory bowel diseases (IBD) including ulcerative colitis and Crohn disease are characterized by chronic inflammation throughout the gastrointestinal tract. The prevalence of IBD has been increasing worldwide, and has sometimes led to irreversible impairment of gastrointestinal structure and functions. In the present study, we identified a new sulfoquinovosylmonoacylglycerols (SQMG) (1) together with two known SQMGs (2 and 3) regulating intestinal inflammation from the brown alga Turbinaria ornata. The anti-inflammatory properties of two bioactive SQMGs, 1 and 2 were evaluated using an in vitro co-culture system consisting of human epithelial Caco-2 cells and PMA (phorbol 12-myristate 12-acetate)-differentiated THP-1 macrophages. Treatment with 1 or 2 inhibited the production nitric oxide and prostaglandin E2 induced by lipopolysaccharide and interferon γ challenge. The expressions of inducible nitric oxide synthase and cyclooxygenase 2 were markedly down-regulated in response to inhibition of nuclear factor κB translocation to nucleus. These findings suggest the potential use of the brown alga T. ornata and its biologically active metabolites SQMGs as pharmaceutical adjuvants in the treatment of inflammation-related diseases, including IBD.

Keywords

References

  1. Abdella, E. M., Mahmoud, A. M. & El-Derby, A. M. 2016. Brown seaweeds protect against azoxymethane-induced hepatic repercussions through up-regulation of peroxisome proliferator-activated receptor gamma and attenuation of oxidative stress. Pharm. Biol. 54:2496-2504. https://doi.org/10.3109/13880209.2016.1160938
  2. Abraham, C. & Cho, J. H. 2009. Inflammatory bowel disease. N. Engl. J. Med. 361:2066-2078. https://doi.org/10.1056/NEJMra0804647
  3. Aggarwal, B. B., Takada, Y., Shishodia, S., Gutierrez, A. M., Oommen, O. V., Ichikawa, H., Baba, Y. & Kuman, A. 2004. Nuclear transcription factor NF-kappa B: role in biology and medicine. Indian J. Exp. Biol. 42:341-353.
  4. Alves, C., Silva, J., Pinteus, S., Gaspar, H., Alpoim, M. C., Botana, L. M. & Pedrosa, R. 2018. From marine origin to therapeutics: the antitumor potential of marine algaederived compounds. Front. Pharmacol. 9:777. https://doi.org/10.3389/fphar.2018.00777
  5. Ananthi, S., Gayathri, V., Malarvizhi, R., Bhardwaj, M. & Vasanthi, H. R. 2017. Anti-arthritic potential of marine macroalga Turbinaria ornata in Complete Freund′s Adjuvant induced rats. Exp. Toxicol. Pathol. 69:672-680. https://doi.org/10.1016/j.etp.2017.06.006
  6. Asari, F., Kusumi, T. & Kakisawa, H. 1989. Turbinaric acid, a cytotoxic secosqualene carboxylic acid from the brown alga Turbinaria ornata. J. Nat. Prod. 52:1167-1169. https://doi.org/10.1021/np50065a045
  7. Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G. & Prinsep, M. R. 2013. Marine natural products. Nat. Prod. Rep. 30:237-323. https://doi.org/10.1039/C2NP20112G
  8. Bouma, G. & Strober, W. 2003. The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol. 3:521-533. https://doi.org/10.1038/nri1132
  9. Canoy, J. L. & Bitacura, J. G. 2018. Cytotoxicity and antiangiogenic activity of Turbinaria ornata Agardh and Padina australis Hauck ethanolic extracts. Anal. Cell Pathol. (Amst.) 2018:3709491.
  10. Cardozo, K. H. M., Guaratini, T., Barros, M. P., Falcão, V. R., Tonon, A. P., Lopes, N. P., Campos, S., Torres, M. A., Souza, A. O., Colepicolo, P. & Pinto, E. 2007. Metabolites from algae with economical impact. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 146:60-78. https://doi.org/10.1016/j.cbpc.2006.05.007
  11. Chia, Y. Y., Kanthimathi, M. S., Khoo, K. S., Rajarajeswaran, J., Cheng, H. M. & Yap, W. S. 2015. Antioxidant and cytotoxic activities of three species of tropical seaweeds. BMC Complement. Altern. Med. 15:339. https://doi.org/10.1186/s12906-015-0867-1
  12. Daigneault, M., Preston, J. A., Marriott, H. M., Whyte, M. K. B. & Dockrell, D. H. 2010. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS ONE 5:e8668. https://doi.org/10.1371/journal.pone.0008668
  13. Deepak, P., Sowmiya, R., Balasubramani, G. & Perumal, P. 2017. Phytochemical profiling of Turbinaria ornata and its antioxidant and anti-proliferative effects. J. Taibah Univ. Med. Sci. 12:329-337. https://doi.org/10.1016/j.jtumed.2017.02.002
  14. Economou, J. S., Rhoades, K., Essner, R., McBride, W. H., Gasson, J. C. & Morton, D. L. 1989. Genetic analysis of the human tumor necrosis factor $\alpha$/cachectin promoter region in a macrophage cell line. J. Exp. Med. 170:321-326. https://doi.org/10.1084/jem.170.1.321
  15. Faulkner, D. J. 2001. Marine natural products. Nat. Prod. Rep. 18:1-49. https://doi.org/10.1039/b006897g
  16. Fernando, I. P. S., Kim, K. -N., Kim, D. & Jeon, Y. -J. 2019. Algal polysaccharides: potential bioactive substances for cosmeceutical applications. Crit. Rev. Biotechnol. 39:99-113. https://doi.org/10.1080/07388551.2018.1503995
  17. Hanashima, S., Mizushina, Y., Yamazaki, T., Ohta, K., Takahashi, S., Sahara, H., Sakaguchi, K. & Sugawar, F. 2001. Synthesis of sulfoquinovosylacylglycerols, inhibitors of eukaryotic DNA polymerase $\alpha$ and $\beta$. Bioorg. Med. Chem. 9:367-376. https://doi.org/10.1016/S0968-0896(00)00252-2
  18. Hirao, S., Tara, K., Kuwano, K., Tanaka, J. & Ishibashi, F. 2012. Algicidal activity of glycerolipids from brown alga Ishiga sinicola toward red tide microalgae. Biosci. Biotechnol. Biochem. 76:372-374. https://doi.org/10.1271/bbb.110645
  19. Jayawardena, T. U., Fernando, I. P. S., Lee, W. W., Sanjeewa, K. K. A., Kim, H. -S., Lee, D. -S. & Jeon, Y. -J. 2019. Isolation and purification of fucoidan fraction in Turbinaria ornata from the Maldives: inflammation inhibitory potential under LPS stimulated conditions in in-vitro and in-vivo models. Int. J. Biol. Macromol. 131:614-623. https://doi.org/10.1016/j.ijbiomac.2019.03.105
  20. Kampfer, A. A. M., Urban, P., Gioria, S., Kanase, N., Stone, V. & Kinsner-Ovaskainen, A. 2017. Development of an in vitro co-culture model to mimic the human intestine in healthy and diseased state. Toxicol. In Vitro 45:31-43. https://doi.org/10.1016/j.tiv.2017.08.011
  21. Kleiveland, C. R. 2015. Chapter 18: Co-culture Caco-2/immune cells. In Verhoeckx, K., Cotter, P., Lopez-Exposito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D. & Wichers, H. (Eds.) The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models. Springer, Cham, pp. 135-140.
  22. Lappas, M., Permezel, M., Georgiou, H. M. & Rice, G. E. 2002. Nuclear factor kappa B regulation of proinflammatory cytokines in human gestational tissues in vitro. Biol. Reprod. 67:668-673. https://doi.org/10.1095/biolreprod67.2.668
  23. Lennernas, H., Palm, K., Fagerholm, U. & Artursson, P. 1996. Comparison between active and passive drug transport in human intestinal epithelial (caco-2) cells in vitro and human jejunum in vivo. Int. J. Pharm. 127:103-107. https://doi.org/10.1016/0378-5173(95)04204-0
  24. Loftus, E. V. Jr. & Sandborn, W. J. 2002. Epidemiology of inflammatory bowel disease. Gastroenterol. Clin. North Am. 312:1-20. https://doi.org/10.1016/S0889-8553(01)00002-4
  25. MacDermott, R. P. 1999. Chemokines in the inflammatory bowel diseases. J. Clin. Immunol. 19:266-272. https://doi.org/10.1023/A:1020583306627
  26. Oeckinghaus, A. & Ghosh, S. 2009. The $NF-{\kappa}B$ family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol. 1:a000034.
  27. Ogata, H. & Hibi, T. 2003. Cytokine and anti-cytokine therapies for inflammatory bowel disease. Curr. Pharm. Des. 9:1107-1113. https://doi.org/10.2174/1381612033455035
  28. Pan, M. -H., Hsieh, M. -C., Hsu, P. -C., Ho, S. -Y., Lai, C. -S., Wu, H., Sang, S. & Ho, C. -T. 2008. 6-Shogaol suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages. Mol. Nutr. Food Res. 52:1467-1477. https://doi.org/10.1002/mnfr.200700515
  29. Pettus, B., Bielawski, J., Porcelli, A. M., Reames, D. L., Johnson, K. R., Morrow, J., Chalfant, C. E., Obeid, L. M. & Hannun, Y. A. 2003. The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and $PGE_{2}$ production in response to TNF-alpha. FASEB J. 17:1411-1421. https://doi.org/10.1096/fj.02-1038com
  30. Rubas, W., Jezyk, N. & Grass, G. M. 1993. Comparison of the permeability characteristics of a human colonic epithelial (Caco-2) cell line to colon of rabbit, monkey, and dog intestine and human drug absorption. Pharm. Res. 10:113-118. https://doi.org/10.1023/A:1018937416447
  31. Saegusa, M., Hashimura, M. & Kuwata, T. 2010. Pin1 acts as a modulator of cell proliferation through alteration in $NF-{\kappa}B$ but not $\beta$-catenin/TCF4 signalling in a subset of endometrial carcinoma cells. J. Pathol. 222:410-420. https://doi.org/10.1002/path.2773
  32. Sakamoto, B., Hokama, Y., Horgen, F. D., Scheuer, P. J., Kan, Y. & Nagai, H. 2000. Isolation of a sulfoquinovosyl monoacylglycerol from Bryopsis sp. (Chlorophyta): identification of a factor causing a possible species-specific ecdysis response in Gambierdiscus toxicus (Dinophyceae). J. Phycol. 36:924-931. https://doi.org/10.1046/j.1529-8817.2000.00006.x
  33. Sanjeewa, K. K. A., Fernando, I. P. S., Kim, S. -Y., Kim, W. -S., Ahn, G., Jee, Y. & Jeon, Y. -J. 2019. Ecklonia cava (Laminariales) and Sargassum horneri (Fucales) synergistically inhibit the lipopolysaccharide-induced inflammation via blocking $NF-{\kappa}B$ and MAPK pathways. Algae 34:45-56. https://doi.org/10.4490/algae.2019.34.2.10
  34. Sheu, J. H., Wang, G. H., Sung, P. J., Chiu, Y. H. & Duh, C. Y. 1997. Cytotoxic sterols from the formosan brown alga Turbinaria ornata. Planta Med. 63:571-572. https://doi.org/10.1055/s-2006-957772
  35. Subash, A., Veeraraghavan, G., Sali, V. K., Bhardwaj, M. & Vasanthi, H. R. 2016. Attenuation of inflammation by marine alga Turbinaria ornata in cotton pellet induced granuloma mediated by fucoidan like sulphated polysaccharide. Carbohydr. Polym. 151:1261-1268. https://doi.org/10.1016/j.carbpol.2016.06.077
  36. Vijayabaskar, P. & Shiyamala, V. 2011. Antibacterial activities of brown marine algae (Sargassum wightii and Turbinaria ornata) from the Gulf of Mannar Biosphere Reserve. Adv. Biol. Res. 5:99-102.
  37. Vijayabaskar, P. & Shiyamala, V. 2012. Antioxidant properties of seaweed polyphenol from Turbinaria ornata (Turner) J. Agardh, 1848. Asian Pac. J. Trop. Biomed. 2:S90-S98. https://doi.org/10.1016/S2221-1691(12)60136-1
  38. Wang, H. -M. D., Li, X. -C., Lee, D. -J. & Chang, J. -S. 2017. Potential biomedical applications of marine algae. Bioresour. Technol. 244:1407-1415. https://doi.org/10.1016/j.biortech.2017.05.198
  39. Zubia, M., Payri, C. & Deslandes, E. 2008. Alginate, mannitol, phenolic compounds and biological activities of two range-extending brown algae, Sargassum mangarevense and Turbinaria ornata (Phaeophyta: Fucales), from Tahiti (French Polynesia). J. Appl. Phycol. 20:1033-1043. https://doi.org/10.1007/s10811-007-9303-3

Cited by

  1. Standardized Fraction of Turbinaria ornata Alleviates Dextran Sulfate Sodium-Induced Chronic Colitis in C57BL/6 Mice via Upregulation of FOXP3 + Regulatory T Cells vol.10, pp.10, 2020, https://doi.org/10.3390/biom10101463
  2. Isoquinolinequinone Derivatives from a Marine Sponge (Haliclona sp.) Regulate Inflammation in In Vitro System of Intestine vol.19, pp.2, 2021, https://doi.org/10.3390/md19020090
  3. Liposoluble portion of the red alga Pyropia yezoensis protects alcohol induced liver injury in mice vol.36, pp.3, 2021, https://doi.org/10.4490/algae.2021.36.4.28